
Cloud Native
Observability
 Practical Challenges and Solutions
 for Modern Architectures

 Kenichi Shibata, Rob Skillington
 & Martin Mao

REPORT

Compliments of

9 7 8 1 0 9 8 1 5 8 9 2 7

https://bit.ly/4bgPf5g?r=qr

Kenichi Shibata, Rob Skillington,
and Martin Mao

Cloud Native Observability
Practical Challenges and Solutions

for Modern Architectures

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15892-7

[LSI]

Cloud Native Observability
by Kenichi Shibata, Rob Skillington, and Martin Mao

Copyright © 2024 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw
Development Editor: Gary O’Brien
Production Editor: Gregory Hyman
Copyeditor: nSight, Inc.

Interior Designer: David Futato
Cover Designer: Susan Thompson
Illustrator: Kate Dullea

February 2024: First Edition

Revision History for the First Edition
2024-02-20: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Native
Observability, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Chronosphere. See our
statement of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence

Table of Contents

1. The Cloud Native Impact on Observability. 1
Challenges of Cloud Native Observability 2
Deep Dive into Observability Data 3
The Goldilocks Zone of Cloud Native Observability 8
The Cloud Native Impact 13
The Three Phases of Observability:

An Outcome-Focused Approach 15
Remediating at Any Phase, with Any Signal 17
Conclusion 18

2. Cloud Native Challenges in the Real World. 19
Impact of Uncontrolled Data Growth

on System Performance 20
Controlling Cost 20
Case Study 1: Improving Performance

While Gaining Huge Cost Savings 21
Impact of Uncontrolled Data Growth

on Observability Reliability 22
Poor Developer Experience Caused

by Poor Observability Data 23
Case Study 2: Increased Observability Reliability

and Improved Developer Experience 24
Making Way for Fast-Paced Innovation 25
Regulatory Requirements 26
Case Study 3: Navigating Observability Challenges in

Balancing Rapid Fintech Growth and SLA Compliance 27
Conclusion 28

iii

3. Strategies for Controlling Observability Data Growth
and Complexity. 31
Emerging Solution Using a Repeatable Framework 31
Using FinOps as an Inspiration 32
Observability Data Optimization Cycle 33
Step 0: Centralized Governance 34
Framework Components 37
Step 1: Analyze 37
Step 2: Refine 39
Step 3: Operate 43
Conclusion 44

4. Open Source Telemetry Standards: Prometheus, OpenTelemetry,
and Beyond. 45
Instrumentation Before Prometheus and OTel 45
Prometheus 47
OpenTelemetry 52
Fluent Bit 55

Conclusion. 57

iv | Table of Contents

1 See CNCF Cloud Native Definition v1.0 for more information.

CHAPTER 1

The Cloud Native Impact on
Observability

Cloud native technologies have changed how people around the
world work. They allow us to build scalable, resilient, and novel soft‐
ware architectures with idiomatic backend systems using an open
source ecosystem and open governance.

The Cloud Native Computing Foundation (CNCF) defines “cloud
native” as technologies that empower organizations to build and
run scalable applications in modern, dynamic environments such
as public, private, and hybrid clouds.1 Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach.

Our own in-the-trenches understanding of cloud native leads us
to define cloud native technologies simply as technologies that are
highly interlinked, flexible, and scalable using cloud technologies as
first-class building blocks.

This then leads us to a discussion about cloud native observability.
However, let’s define what observability is first. According to the
CNCF, observability is “a system property that defines the degree
to which the system can generate actionable insights. It allows users

1

https://oreil.ly/Y6Onf

2 See the CNCF’s observability definition for more information.

to understand a system’s state from these external outputs and take
(corrective) action.”2

With this in mind, we are defining cloud native observability as the
ability to measure how well you can understand the total state of
your system with all of the complexities of a highly interlinked, flex‐
ible, and scalable system running in containers on a microservices
architecture in the cloud.

With the above definition, it seems obvious that any existing princi‐
ples, practices, or tools that apply to traditional observability would
also apply to cloud native observability. However, as you soon will
learn, this is not the case; many principles are similar but have
unique challenges to overcome.

Challenges of Cloud Native Observability
What, then, is the difference between the observability of a tradi‐
tional system and a cloud native system? Mostly it comes down to
the three additional cloud native definitions we stated earlier:

• Cloud native systems are commonly interlinked (e.g., via inter-•
service calls directly or over a service mesh), causing most fail‐
ures to be cascading in nature and making it difficult to observe
the exact cause versus a symptom of a failure. For example,
Slack experienced a major incident caused by a cascading failure
on February 22, 2022.

• Cloud native systems are highly flexible and dynamic, making•
transient failures an expected state of the system, and therefore
there is a greater need for gracefully handling failures, which
create noise in observability systems. From October 28 to Octo‐
ber 31 of 2021, Roblox experienced a significant systems failure
because of unexpected failures in Consul (a software used for
service discovery) that were not handled gracefully.

2 | Chapter 1: The Cloud Native Impact on Observability

https://oreil.ly/lxnJR
https://oreil.ly/4vlIY
https://oreil.ly/AtN4_

• Cloud native systems are typically decoupled and deployed in•
smaller units of compute for high scalability, causing a large
amount of telemetry to be added to observability systems. A
study by the analyst firm Enterprise Strategy Group (ESG)
concluded that larger volumes of telemetry are one of the
top three concerns when using or supporting observability
solutions.

These three challenges not only require better tooling and principles
but also practices when dealing with highly sophisticated spiderweb-
like cloud native systems.

A more day-to-day analogy is that traditional observability is akin
to a simple magnet and paper clip. You know that the magnet will
always attract the paper clip; each time there is no change. Same
magnetic force and the same metal.

However, cloud native observability is akin to observing air pressure
in a tire, which is fixed in nature until you try to observe it using an
air pressure gauge. Even the very act of observing the pressure (or in
our case, cloud native services) changes it!

To conclude, cloud native observability is hard because cloud native
services are highly scalable and dynamic. It’s the advantages of these
services that make our job harder than ever before.

Deep Dive into Observability Data
Let’s talk about what we mean by “observability data” anyway. Let’s
take a look at an ecommerce system.

One part of the system is a cart service. Let’s say you ordered a box
of tissues from that ecommerce website. What kind of observability
data does it produce? The cart service might produce an event that
would take stock from a database inventory and subtract from it
one box of tissues. This event firing is both observability data and
a service transaction. Notice that we have not yet explicitly talked
about metrics, logs, or traces. Events are the source of observability
data, such as logs, traces, and metrics, which are derived from such
events that occur within a system.

Deep Dive into Observability Data | 3

https://oreil.ly/s_H4r

3 Rob Skillington, “What Is High Cardinality,” Chronosphere, February 24, 2022,
https://oreil.ly/-wttH.

Observability Data Is Growing in Scale
We described that observability data in a cloud native landscape
increases exponentially. But digging deeper, what is the main cause
of this increase?

There are two main factors for this ongoing explosion of observa‐
bility data. They are volume and cardinality. Volume is simple, the
amount of data you collect. Cardinality is much more complicated;
there are many different ways you can slice and dice your data. We
will discuss cardinality in more detail shortly.

Since there are more interconnected services in a cloud native
environment, a greater volume of data is captured per business
transaction than non–cloud native environments. Also, containers
are smaller in unit size than their predecessors, and each container
emits unique telemetry separately. Finally, since there are more var‐
iations of these cloud native services, that data needs to be sliced
using dimensions in a myriad of different ways.

Because of the increased volume and cardinalities in real-world use
cases, we posit that cloud native environments emit 10 to 100 times
more data than traditional virtual machine–based environments.

As a consequence of volume and cardinalities, to achieve good
observability in a cloud native system, you will have to deal with
large-scale data.

Understanding Cardinality and Dimensionality
Two important concepts you’ll need to understand are cardinality
and dimensionality. Cardinality is the number of possible groupings
depending on the observability data’s dimensions. Dimensions are
the different properties of your data, as Rob Skillington explains.3

Think of the labels on a shirt on a store shelf. Each label (in this
simplified example) contains three dimensions: color, size, and type.

4 | Chapter 1: The Cloud Native Impact on Observability

https://oreil.ly/-wttH

Each dimension increases the amount of information we have about
that shirt. You could slice that information into many shapes, based
on how many dimensions you use to sort it. For example, you could
look by just color and size, size and type, or all three. Dimensionality
means being able to slice the metrics into multiple shapes.

Increased dimensionality can greatly increase cardinality. Cardinal‐
ity, in this example, would be the total number of possible labels
you could get by combining those dimensions from the shirts in
your inventory. Figure 1-1 visualizes this example by looking at two
dimensions: color and size.

Figure 1-1. Shirt inventory with two cardinalities

There are only two cardinalities in Figure 1-1, even though there
are three possibilities. That’s because the last combination, while
theoretically possible, is not in the inventory and therefore is not
emitted.

Because events have dimensions, any data derived from events
has cardinality. This includes derivatives such as logs, traces, and
metrics.

Now let’s look at what happens if we increase the number of dimen‐
sions, and therefore possible cardinalities, by adding the type of
shirt. Figure 1-2 shows how increasing the number of dimensions
also increases the cardinality of the metrics.

Deep Dive into Observability Data | 5

Figure 1-2. Shirt inventory with three cardinalities

What does this look like in practice? For example, assume you
wanted to add a new dimension in an HTTP_REQUEST_COUNT metric.
You want to know which specific HTTP status code created an HTTP
5xx error. This would allow you to better debug the error code path
server side. To further debug issues introduced by certain client
versions, you need to add something like a CLIENT_GIT_REVISION
dimension in the above HTTP metric. Let’s calculate how much it will
theoretically add to the cardinality:

50 services/applications (including daemon agents/proxies/
balancers/etc.)

× 20 average pods per service

× 20 average HTTP endpoints or gRPC methods per service

× 5 common status codes

× 30 histogram buckets

= 3 million unique time series

However, precisely because it is multiplicative, removing one
dimension will decrease the cardinality multiplicatively as well.
Assume you do not need to determine exactly which pod is causing
HTTP 5xx errors because you can track down the offending error
code path using CLIENT_GIT_REVISION itself:

6 | Chapter 1: The Cloud Native Impact on Observability

4 Joel Bastos and Pedro Araújo, “Cardinality,” in Hands-On Infrastructure Monitoring
with Prometheus (Packt, 2019), https://oreil.ly/vmk4Z.

5 Lydia Parziale et al., Chapter 10, in Getting Started with z/OS Container Extensions and
Docker (Redbooks, 2021), https://oreil.ly/e21Wc.

50 services/applications (including daemon agents/proxies/
balancers/etc.)

× 20 average pods per service

× 20 average HTTP endpoints or gRPC methods per service

× 5 common status codes

× 30 histogram buckets

= 150,000 unique time series

As Bastos and Araújo note, “Cardinality is multiplicative—each
additional dimension will increase the number of produced time
series by repeating the existing dimensions for each value of the new
one.”4 Choosing the right dimensions is key to keeping cardinality in
check.

Cloud Native Systems Are Flexible and Ephemeral
“Containers are inherently ephemeral,” Lydia Parziale et al. write in
Getting Started with z/OS Container Extensions and Docker. “They
are routinely destroyed and rebuilt from a previously pushed appli‐
cation image. Keep in mind that after a container is removed, all
container data is gone. With containers, you must take specific
actions to deal with the ephemeral behavior.”5

The other effect of using containers and cloud native architecture is
that distributed systems are more flexible and more ephemeral than
monolithic systems. This is because containers are faster to spin up
and close down. Containers make observing an ephemeral system
difficult, since they come and go quickly: a container that spun up
a few seconds ago could be terminated before we get a chance to
observe it.

Deep Dive into Observability Data | 7

https://oreil.ly/vmk4Z
https://oreil.ly/e21Wc

6 Eric Carter, 2018 Docker Usage Report (Sysdig, 2018), https://oreil.ly/ftZum.

According to a survey by Sysdig, 95% of containers live less than a
week.6 The largest cohort—27%—are containers that churn roughly
every 5 to 10 minutes. Eleven percent of containers churn in less
than 10 seconds.

The flexibility of cloud native architectures allows for increased scal‐
ability and performance. You can easily take a pod away or increase
it a hundredfold. You can even add labels to increase the context of
the metrics. This has fundamentally increased the observability of
data produced.

Another key change from traditional workloads is that data reten‐
tion in cloud native environments is different. Retaining terabytes
and petabytes of data is easier in cloud native workloads, as there
is virtually unlimited storage. However, in cloud native architec‐
tures, especially in containers, workloads are inherently stateless and
flexible. Retaining data is paramount to prevent loss of information
when termination happens and new containers are spun up.

This is why data in cloud native architectures is constantly growing
in scale and cardinality. The ephemeral nature of cloud native sys‐
tems gives it the flexibility to scale up and down faster than ever
before.

The Goldilocks Zone of Cloud Native
Observability
Another factor in cloud native observability is that business out‐
comes of providing a reliable and scalable service are sometimes
decreasing while observability data volumes are increasingly dispro‐
portionate to the value of the additional data collected.

Increasingly, we hear that cloud native observability systems cost
more than traditional observability systems to maintain and run
while counterintuitively delivering reduced business outcomes. But
all is not lost! We believe you can intelligently shape your data using
policies without having to micromanage your data to best utilize
costly telemetry storage. This state is a good balance between cost

8 | Chapter 1: The Cloud Native Impact on Observability

https://oreil.ly/ftZum

7 National Aeronautics and Space Administration, “What Is the Habitable Zone
or ‘Goldilocks Zone’?” Exoplanet Exploration: Planets Beyond Our Solar System,
https://oreil.ly/hB0kG.

8 Rachel Dines, “New ESG Study Uncovers Top Observability Concerns in 2022,”
Chronosphere, February 22, 2022, https://oreil.ly/gKLm8.

and still keeping enough data to deliver better business outcomes.
We call this theory the Goldilocks zone of cloud native observability.
“Goldilocks zone” is used in astronomy to refer to the theoretically
habitable area around a star where it is not too hot or too cold for
liquid water to exist on surrounding planets.7

But why is this cost increasing? What are the factors that are driving
this cost? How do we control this cost while increasing business
outcomes? And more importantly, how do we keep our fellow
observability practitioners from burning out?

We postulate a truism (or a paradox) in cloud native systems that
cloud native adoption itself can feel self-defeating:

To help build better business outcomes in your cloud journey, your
cloud native adoption needs to expand. As you adopt cloud native
further, you need to build more microservices. And as you build
more microservices, you accumulate complexity, which conversely
causes lesser business outcomes.

The complexity we are talking about here is the number of systems
you have to support and the additional increase in failure modes
that can lead to the growth of data each system produces. This could
mean business data but also observability data.

Cloud Native Environments Emit Exponentially
More Data Than Traditional Environments
Cloud native systems growing in scale to tackle complexity means
the observability data they produce also grows. Based on a study by
ESG, this growth is exponential in nature, far outpacing the growth
of the business and its infrastructure (as shown in Figure 1-3).
This rapid rate of growth causes problems: storing all of the data
about everything (logs, metrics, and traces) would be prohibitively
expensive in terms of cost and performance. ESG also found that
69% of the IT, DevOps, and application development professional
respondents saw the growth rate of observability data as “alarming.”8

The Goldilocks Zone of Cloud Native Observability | 9

https://oreil.ly/hB0kG
https://oreil.ly/gKLm8

Figure 1-3. Cloud native’s impact on observability data growth (adap‐
ted from an image by Chronosphere)

Why so much growth? The reasons include faster deployments, a
shift to microservices architectures, the ephemerality of containers,
and even the cardinality of the observability data itself to model the
moving picture of this complex environment!

Delivering Reduced Business Outcomes
This moves us to the fact that a higher volume of observability data
in cloud native is correlated with reduced business outcomes. Why
is that?

In traditional observability, the main challenge for practitioners
was increasing observability data due to higher transaction volume
or system complexity to meet business needs. There was no stan‐
dard way of outputting observability data from traditional systems;
each vendor had their way of doing this (discussed in depth in
Chapter 2).

What little observability data we had was directly related to the
systems we wanted to observe. Since there was less interdependence,
each data point was independently valuable and presented a slice of
critical observation tied directly to obvious business outcomes.

With cloud native, we now have an abundance of observability data.
Yet, when much of this data is too fine-grained and ambiguous
without further context, its significance decreases and creates more
noise. Instead, we need aggregate data that would be contextually
useful and directly support better business outcomes.

10 | Chapter 1: The Cloud Native Impact on Observability

https://chronosphere.io

9 Michael Hausenblas, “Return on Investment Driven Observability,” March 24, 2023,
https://oreil.ly/n2Aax.

In short, we’re seeing reduced business outcomes due to too much
observability data of low quality and irrelevant to the big picture.
Increasingly we are seeing that practitioners find it difficult to
deliver the same level of business outcomes using the same level of
investments. As Michael Hausenblas explains, “With observability,
it’s just like that: you need to invest to gain something.”9

Observability Practitioners Lose Focus
Practitioner teams tend to get bogged down in the weeds of
instrumentation and lose sight of the fact that more telemetry
data does not always equal better observability. As cloud native
systems become more complex, so does the instrumentation needed
to get telemetry data from these systems, shifting the focus from
conducting data analysis to telemetry management. All of this cre‐
ates undue stress and tends to cause burnout for practitioners.

This does not change the need for observability data in the cloud
native world. It simply means it is now harder to extract positive
business value and outcomes from this data. To refocus, we need to
ask the right questions, such as:

• Do you instrument critical parts of your code sufficiently?•
• Which data do you collect?•
• What is your storage and retention strategy?•
• How many ways can you slice and dice your data?•
• Are there dashboards to visualize this data?•

Worse yet, practitioner teams may even instrument the wrong data
and present it to the dashboard and the alerting system.

The loss of focus is even more apparent if we improve the questions:

• Do you get alerted appropriately when there is an issue?•
• Does the alert give you a good place to start your investigation?•
• Are the alerts too noisy?•
• How do you visualize the data you collect?•

The Goldilocks Zone of Cloud Native Observability | 11

https://oreil.ly/n2Aax

• Do you even use it at all during incidents?•
• Can you use the dimensions of the metrics to help triage and•

scope the impact of the issue?
• Are the alerts useful and helpful before and after incidents?•

We recommend only instrumenting the telemetry that matters to
your organization, which allows you to focus on outcomes. Focus‐
ing on business outcomes helps practitioners be more connected
to the overall goal of the business, reducing burnout. To achieve
this focus, follow the three phases of observability (which we will
discuss in more detail in “The Three Phases of Observability:
An Outcome-Focused Approach” on page 15) to refine your pro‐
cesses and tools iteratively, and be vigilant in measuring your mean
time to remediate (MTTR) and mean time to detect (MTTD).
Additionally, implementing internal service-level objectives (SLOs)
and customer service-level agreements (SLAs) centers observability
practices around crucial business outcomes, fostering a more
outcome-oriented approach.

Increasing Cost of Observability Data
With both cloud native and traditional environments, as we increase
the amount of data we increase the cost (Figure 1-4).

Figure 1-4. Value versus cost of observability tool before and after
cloud native

12 | Chapter 1: The Cloud Native Impact on Observability

10 Gartner, “Gartner Says Cloud Will Be the Centerpiece of New Digital Experiences,”
November 10, 2021, https://oreil.ly/Ney9y.

11 Chronosphere, “Cloud Native Without Observability Is Like a Flightless Bird,”
https://oreil.ly/UmYrM.

The Goldilocks zone is where cloud native observability data is worth
the cost. However, the business value decreases as you decrease or
increase the observability data. Finding the Goldilocks zone means
you gather the correct observability data and store the useful and
effective slices of the synthesized observability data.

The Cloud Native Impact
According to a recent survey conducted by Gartner, cloud native
adoption is growing.10 By 2028, 95% of all global organizations will
be running containers in production, an increase from fewer than
50% in 2023. The survey also indicates that 25% of all enterprise
applications will be running in containers, from fewer than 15% in
2023.

What this shows us is that cloud native adoption has already crossed
the chasm and that there is no going back.

Slower Troubleshooting
A separate survey found that engineers working on cloud native
environments spend an average of 10 hours of their time per week
troubleshooting,11 54% of participants feel stressed out, 45% don’t
have time to innovate, and 29% want to quit due to burnout. Burn‐
out bites twice because software engineers are not interchangeable
and onboarding new engineers takes a while.

When people who have burned out leave, they take valuable institu‐
tional knowledge with them. The loss of institutional knowledge
further deteriorates business outcomes.

Eighty-seven percent of participants agree that cloud native archi‐
tectures make observability more challenging, with the same per‐
centage agreeing that observability is essential to cloud native
success.

The Cloud Native Impact | 13

https://oreil.ly/Ney9y
https://oreil.ly/UmYrM

Tools Become Unreliable
Tools become unreliable when they are unable to scale with the
volume and complexity of data generated by cloud native systems
or when they fail to adapt to the ephemeral nature of cloud native
architectures.

Traditional observability systems were generally simpler because
there were fewer ways a system could fail and the volumes of data
were generally smaller. With cloud native, there are more ways for
systems to fail, and there is also a growth in observability data due to
distributed sets of interrelated data.

In a pre–cloud native world, tools were reliable because the archi‐
tectures were mostly static and homogenous, allowing you to under‐
stand the failure modes. However, with the shift to cloud native
architectures, these tools are no longer reliable. To increase the
reliability of your observability system, you need to store the correct
observability data.

The question is, how do you identify which observability data is
worth storing?

Use Context to Troubleshoot Faster
To answer this question, you need to understand the major use cases
for observability data in your organization.

For example, look at high-impact observability data like remote
procedure call traffic, request/response rates, and latency, ideally as
they enter your system. If you have, for example, 100 microservices,
how many dimensions should you add to your metrics? Should you
capture all data as it comes in for each metric? Performing this
analysis, at least on the present and shared dimensions across these
metrics, can be a difficult but worthwhile exercise.

14 | Chapter 1: The Cloud Native Impact on Observability

What does that exercise give your observability data? In a word,
context. You are no longer getting and keeping all observability data
but only observability data useful in the context of your cloud native
architecture and applications.

The Three Phases of Observability:
An Outcome-Focused Approach
A focus on context also becomes important when we keep its origi‐
nal and primary purpose in mind: to remediate or prevent issues in
the system.

As builders of that system, we want to measure what we know best.
We tend to ask what metrics we should produce to understand
if something is wrong with the system. To remediate it, working
backward from customer outcomes allows us to focus on where the
heart of observability should be: what is the best experience for the
end user?

In most cases, a customer wants to be able to do what they came to
do: for example, buy your products. You can work backward from
there. You don’t want your customers to be unable to buy products,
so if the payment processor goes down or becomes degraded, you
need to know as soon as possible to remediate the issue.

Once you find the customer outcomes you are looking for, then the
primary signals of observability (metrics, logs, and traces…along‐
side other signals like events) can play a role. If your customers need
error-free payment processing, you can craft a way to measure and
troubleshoot that. When deciding on signals, we endorse starting
from the outcomes you want.

We call our approach the three phases of observability (Figure 1-5).

The Three Phases of Observability: An Outcome-Focused Approach | 15

Figure 1-5. The three phases of observability (adapted from an image
in Rachel Dines, “Explain It Like I’m 5: The Three Phases of Observa‐
bility,” Chronosphere, August 10, 2021, https://oreil.ly/f7dnZ)

As part of a remediation process, the three phases can be described
in the following terms:

• Knowing quickly within the team if something is wrong•
• Triaging the issue to understand the impact: identifying the•

urgency of the issues and deciding which ones to prioritize
• Understanding and fixing the underlying problem after per‐•

forming a root cause analysis

Some systems are easier to observe than others. The key is being
able to observe the system in question at the granularity that lets you
make a decision quickly and decisively.

Let’s say you work for an ecommerce platform. It’s the annual
Black Friday sale, and millions of people are logged in simultane‐
ously. Here’s how the three phases of observability might play out
for you:

Phase 1: Knowing
Suddenly, multiple alerts fire off to notify you of failures. You
now know that requests are failing.

16 | Chapter 1: The Cloud Native Impact on Observability

https://oreil.ly/f7dnZ

Phase 2: Triaging
Next, you can triage the alerts to learn which failures are most
urgent. You identify which teams you need to coordinate. Then
you learn if there is any customer impact. You scale up the
infrastructure serving those requests and remediate the issue.

Phase 3: Understanding
Later on, you and your team perform a postmortem investiga‐
tion of the issue. You learn that one of the components in the
payments processor system is scanning many unrelated users
and causing CPU cycles to increase tenfold—far more than
necessary.

You determine using the payments processor metrics dashboard
that this increase was the root cause of the incident. The payments
processor requires more CPU than you currently allocate, which
bottlenecks the entire cart system. You and the team fix the compo‐
nent permanently by allocating more CPU and scaling the payments
processor horizontally.

Remediating at Any Phase, with Any Signal
Although we posit three phases, at any phase your goal in practice
is always to remediate problems quickly. If a single alert is firing off
and you can take steps to remediate the issue as soon as you know
about it (Phase 1), you should do so. You don’t have to stop to triage
or do a root cause analysis every time if these are unnecessary.

To illustrate this point, let’s say a scheduled deployment immediately
breaks your production environment. There is no need to triage or
do root cause analysis here since you already know that the deploy‐
ment caused the breakage. Simply rolling back the deployment when
errors become visible remediates the issue.

You can also resolve an issue using observability, even without using
all of the traditional observability signals (metrics, logs, and traces).
In the payment processing example in the previous section, we show
one situation where just looking at the metrics dashboard could be
used to determine which systems in what environments and code
paths were causing the issue and provide enough information to
allow for a quick and efficient fix.

Remediating at Any Phase, with Any Signal | 17

Conclusion
In conclusion, the shift to cloud native systems created an issue
of ballooning observability data, resulting in a loss of focus on
customer outcomes, practitioner burnout, and an increase in the
cost of observability systems.

Finding the Goldilocks zone in your observability strategy will allow
you to manage the trade-off between cost and better business
outcomes.

The growth of observability data in cloud native systems is caused
by cardinality, the flexibility of cloud native architecture, and greater
interdependence between cloud native services.

Finally, we recommend that you follow the three phases of observa‐
bility to remediate issues and to ensure that you keep only useful
observability data you need, using context as your guide.

18 | Chapter 1: The Cloud Native Impact on Observability

1 Andy Oram, Filling the Observability Gap (O’Reilly, 2021), https://oreil.ly/HWxUl.

CHAPTER 2

Cloud Native Challenges
in the Real World

Observability in a cloud native world is difficult; gathering data
from a single output source and correctly inferring a view of the
world about that cloud native service is impossible. We are now in
a world where cloud native observability needs to be correlated and
processed in myriad ways for a single assumption to be proven true
or false.

In a survey titled “Filling the Observability Gap” conducted by
O’Reilly about observability, respondents revealed three main chal‐
lenges: lack of observability data, high costs related to tools and
training, and difficulties coordinating the teams that were trying to
solve system and network problems.1

This chapter delves into real-world scenarios highlighting the per‐
formance, cost, and reliability issues associated with observability
data. We will explore case studies from companies that illustrate
practical approaches and possible solutions to these challenges.
Finally, we will try to come up with a reusable solution.

While the overarching challenges of cloud native observability
are clear, one of the most immediate impacts is seen in system
performance. Let’s explore how uncontrolled data growth can signif‐
icantly strain our systems.

19

https://oreil.ly/HWxUl

Impact of Uncontrolled Data Growth
on System Performance
A key factor contributing to this uncontrolled data growth is auto‐
matic instrumentation. Consider the example of NGINX: installing
the NGINX ingress controller in a cluster is straightforward, and
enabling observability data generation is as simple as activating a
configuration setting. However, this ease of use comes with a down‐
side. The activation of automatic instrumentation often results in
the creation of numerous unnecessary metrics, leading to additional
clutter in the observability system.

The combination of automatic instrumentation and horizontal scal‐
ing exacerbates the problem. We began accumulating so much data
in the observability system that it created an extensive data set.
Querying this extensive data set presented a substantial challenge in
maintaining efficient system performance.

As we have seen, unchecked data growth can severely hinder system
performance. But beyond performance, there lies a critical concern
of cost management.

Controlling Cost
The ideal solution to control cost is to downsample or downright
drop data before any of it is persisted. Anecdotally, we figured out
that this is not enough on its own.

As we soon learned, controlling costs and making cloud native
observability efficient is not a milestone you can reach but a whole
journey you must undertake. Think about it this way: you can delete
unused data today, but tomorrow another set of unused data will be
populated and you will be in an unending game of whack-a-mole.
You need a strategic plan to effectively target priority issues and
maintain repeatable outcomes.

Having discussed the theory behind cost control and performance,
let’s examine how these principles are applied in real-world scenar‐
ios. Our first case study provides a concrete example of tackling
these challenges.

20 | Chapter 2: Cloud Native Challenges in the Real World

Case Study 1: Improving Performance
While Gaining Huge Cost Savings
The Challenge
Our first example is one of the world’s largest fintech companies,
servicing close to 80% of the US ecommerce market. Mere seconds
of downtime directly impact top-line revenue, affecting not just
them but also their customers. For example, selling BNPL (buy now,
pay later) financial products means that reliability and performance
are paramount. If an end customer can’t secure financing at check‐
out, it’s a loss for the company in terms of revenue. Furthermore, the
end customer might forgo purchasing the product from the partner
business, leading to a compounded loss of revenue. All in all, it’s
not a good experience for anybody. Not for the end customers, the
company, or its customers.

They needed a way to detect right away if there are any issues
and if performance was impacted in subseconds. Not only that, but
they also needed to implement solutions that would recover from
issues in record time. The criticality of these services meant that
observability performance is a top concern.

Approach
We had significant cost savings while we were actually able to send more
data over the system. With big load increases during our Black Friday
event—up to 10x—and Chronosphere had no issues handling that.… It
was a win-win overall for us.

—Former senior principal engineer at fintech company

The solution was a multifaceted approach, focusing on proactive
issue detection and swift resolution. This started with a sophistica‐
ted data analysis system capable of evaluating observability data
granularly before it was even persisted. By analyzing data at the
ingestion stage, they identified potential issues or performance bot‐
tlenecks early on, thereby preventing them from escalating into
customer-impacting problems.

Refining the persisted data was another critical step. This involved
optimizing data to ensure that only relevant and necessary data
is retained, thereby reducing storage costs and improving data
processing efficiency. Employing advanced data aggregation and

Case Study 1: Improving Performance While Gaining Huge Cost Savings | 21

downsampling techniques played a significant role in this step, lead‐
ing to significant cost savings without compromising on data quality
or accessibility.

Operating a highly performant observability solution required con‐
tinuous improvement of use cases as well. Imagine creating a solu‐
tion tailored to each use case that allows you to generate insights
into your usage costs. Another aspect was a highly optimized query
that enabled the creation of performant dashboards for each team,
allowing them to be alerted in subseconds if something goes wrong
in a specific customer journey.

Lastly, it was important to follow the three phases of observability to
sort through alerts effectively, distinguishing between real issues and
minor glitches or “noise.” This way, the team can focus on what truly
matters and ensure a smooth experience for their customers.

The company’s approach to tackling performance and cost issues
provided valuable insights into handling data growth, a pervasive
challenge in cloud native observability. This leads us to the next
critical aspect: the impact of this data growth on the reliability of
observability systems.

Impact of Uncontrolled Data Growth
on Observability Reliability
The unrestrained expansion of data within observability systems
poses a threat to their reliability. As the volume of data grows, the
ability of observability systems to effectively monitor and report
on applications is compromised. The main issue is the overload
of information. When observability systems are flooded with more
data than they can efficiently handle, indexing the data becomes
very difficult, and important signals get lost. Worse, it can obscure
key indicators, making it difficult to identify and analyze issues.

The surge in data not only complicates the analysis process but
also puts a significant strain on the infrastructure supporting the
observability systems. As data volumes grow, the infrastructure is
strained, struggling to store, process, and retrieve the vast quanti‐
ties of data efficiently. This strain can lead to increased latency in
data processing or, in more severe cases, cause system outages or
slowdowns.

22 | Chapter 2: Cloud Native Challenges in the Real World

While we have seen how uncontrolled data growth can strain
our system’s reliability, another significant aspect is its impact on
the developers who build and maintain these systems. Let’s delve
into how poor observability data can lead to a poor developer
experience.

Poor Developer Experience Caused
by Poor Observability Data
The challenges extend beyond uncontrolled data growth; capturing
inadequate or sometimes outright not useful data also has a substan‐
tial impact. Inadequate observability data can significantly impede a
developer’s understanding and control over the software they build.
This lack of clarity not only diminishes visibility into the applica‐
tion’s performance but also hinders the developer’s ability to take
full ownership of their work. Often, when faced with unreliable or
nonexistent centralized observability solutions, developers resort to
creating or adopting alternative observability methods themselves.

In this context, there is a need for a centralized observability team to
exist. The primary goal of that centralized observability team should
be to provide service owners and developers with high-quality
observability tools. These tools are essential for enabling teams to
manage their services effectively and efficiently. An important aspect
of this is the team’s ability to empower developers to provide good
developer experience and allow them autonomy within the observa‐
bility system’s framework. This ensures that developers have the nec‐
essary resources to quickly implement new features and effectively
resolve incidents, streamlining the development process.

Understanding the struggles developers face when observability sys‐
tems are unreliable and observability data is inadequate sets the
stage for our next case study. We will be examining how a social
network is facing similar challenges aimed at improving both the
reliability of their observability and their developers’ experience.

Poor Developer Experience Caused by Poor Observability Data | 23

Case Study 2: Increased Observability
Reliability and Improved Developer
Experience
The Challenge
One social media company has grown massively, serving hundreds
of millions of daily users worldwide. As they scaled, their in-house
open source observability solution was getting expensive and time-
consuming for engineers to realistically manage as the company saw
massive user growth.

To be competitive in a crowded social media market and delight
the millions of customers they serve, they must deliver best-in-class
availability and performance to customers worldwide. However, the
company’s previous observability setup wasn’t meeting expectations:

Availability
The previous open source software system faced stability issues
and was constantly failing. Every time the system crashed, engi‐
neers had to manually step in and bring systems back online—
which was time-consuming and costly. Furthermore, the sys‐
tem had performance issues, which meant that dashboards and
queries would load slowly or not at all, and engineers couldn’t
respond quickly to customer-facing issues.

Scalability
Their observability system was at its limits and couldn’t keep up
with the amount of daily ingested data. This meant that they
were only able to ingest and retain a fraction of the metrics they
needed for troubleshooting purposes. As they moved to a cloud
native architecture, they knew they would need a system that
could provide all the critical metrics at a reasonable cost.

Usability
They found that their self-managed Graphite instances were dif‐
ficult to use, time-consuming to manage, and negatively affec‐
ted developer experience. It was also costly to run in terms of
infrastructure costs and people hours.

24 | Chapter 2: Cloud Native Challenges in the Real World

Approach
The approach for them involved creating the ability to analyze
their most useful observability data. The company has millions of
customers, so they needed to ruthlessly prioritize only the observa‐
bility data that has the most value. However, as the observability
data changes depending on the context, it was prudent to have a
real-time view of data flowing into their system.

A real-time view of the data allowed them to rank and label observ‐
ability data and how it contributed to the overall growth of observ‐
ability data, thus improving reliability. Additionally, the ability to
filter signal from noise when dealing with the data of millions of
customers became paramount. Analysis on this level accelerated
issue triage and significantly curtailed cost.

The analysis described allowed them to have a highly available
and scalable solution with a justifiable cost. However, to further
improve the developer experience, providing a highly refined set
of observability data was crucial. By dropping irrelevant data, aggre‐
gating useful data, setting appropriate data retention periods, and
downsampling data effectively, they ensured that developers are not
overwhelmed with unnecessary information.

This refinement step aids in maintaining a balance between data
volume and utility, making the observability system more efficient
and easier to use. Developers can then focus on meaningful data
that directly impacts their work, enhancing their productivity and
improving their ability to swiftly address issues. The result was a
developer-friendly environment where the focus is on actionable
insights.

The strategic approach they adopted, which balanced cost efficiency
and high-quality data for developers, naturally led into the realm
of fostering rapid innovation. As we shift our focus we will explore
how observability practitioners can enable a fast-paced innovation
environment where stability and innovation coexist within well-
defined guardrails.

Making Way for Fast-Paced Innovation
A critical challenge for observability practitioners is the balancing
act of enabling developers to rapidly innovate while providing sta‐
ble and resilient platforms for them to quickly experiment without

Making Way for Fast-Paced Innovation | 25

causing disruption to the entire observability system or causing
noisy neighbor issues. Developers need to have autonomy to inno‐
vate effectively; however, most innovations are disruptive in nature.
The observability practitioners need to be able to set guardrails
to provide stability while keeping developers as autonomous as
possible.

Aside from stability, the observability practitioners should also
empower organizations to adapt and evolve by providing in-depth
insights. The key therefore lies in establishing robust guardrails that
provide a safe environment for experimentation and innovation
without compromising observability system stability.

As we delve into the intricacies of fostering innovation, visibility of
usage becomes crucial. This visibility will not only allow for tracking
usage but also for enabling informed decisions when dealing with
cost allocation. Which team uses which observability data, and for
what reasons? This would allow a centralized observability team to
provide a consistent approach when building guardrails.

Navigating from the need for fast-paced innovation and the imple‐
mentation of effective guardrails, we transition into another piv‐
otal aspect of cloud native observability: adhering to regulatory
requirements.

Regulatory Requirements
In highly regulated industries like finance and healthcare, observa‐
bility is crucial not only for organizational efficiency but also for
compliance with legal mandates. These sectors demand a high level
of transparency, especially for sensitive financial transactions, mak‐
ing observability integral to regulatory adherence.

Service-level agreements (SLAs) are vital in these regulated envi‐
ronments, setting benchmarks for minimum uptime of essential
services. SLAs are more than operational metrics; they represent
a commitment to reliable customer service and are often scru‐
tinized by regulatory bodies. However, as businesses grow and
become more complex, maintaining these SLAs can be challeng‐
ing. Increased demand can strain observability systems, leading to
potential service disruptions or performance degradation, which in
turn risks noncompliance with regulatory SLAs.

26 | Chapter 2: Cloud Native Challenges in the Real World

This challenge of scaling observability systems in line with business
growth and maintaining compliance with SLAs is not just theoreti‐
cal. It’s a real-world issue that many companies face, particularly in
the fast-evolving fintech sector.

Case Study 3: Navigating Observability
Challenges in Balancing Rapid Fintech
Growth and SLA Compliance
The Challenge
In the competitive and fast-evolving fintech sector, companies
are compelled to accelerate their pace of innovation, embrac‐
ing cutting-edge technologies like artificial intelligence/machine
learning, predictive analytics, and modern application development.
This drive for innovation, while crucial for staying ahead, introduces
complex systems that demand vigilant monitoring to ensure seam‐
less functionality. One leading name in the fintech world exemplifies
this scenario.

For them, the core challenge is twofold: maintaining high reliability
and performance for its rapidly expanding user base and simultane‐
ously sustaining its swift pace of innovation. This must be achieved
within the framework of strict regulatory compliance, adding a layer
of complexity to their operational strategy.

Approach
When money and regulatory bodies are involved, the reliability stakes
are even higher—we needed to eliminate all barriers for customers to
trade on our platform.

—Senior staff engineer at fintech company

For this rapidly evolving company, the primary approach revolved
around aligning with the business pace and ensuring SLA compli‐
ance. This began with a backward analysis to identify traffic and
usage patterns most critically affecting SLA fulfillment.

A key aspect of this analysis involved understanding developers’
needs regarding observability data to accelerate innovation. Would
additional observability data about product features that customers
use help developers, or would it be a case of understanding the

Case Study 3: Navigating Observability Challenges in Balancing Rapid Fintech Growth and SLA Compliance | 27

important observability data and getting it more granularly? These
kinds of questions need to be answered during the analysis.

Refining the existing data becomes crucial as they continue to inno‐
vate. With each new feature or capability added, the impact on exist‐
ing features is considered; for example, how a new feature A can
influence existing feature B positively or negatively. Therefore, the
ability to aggregate is a critical consideration in developing effective
observability solutions.

Lastly, there is a commitment to continual improvement, adjusting
for efficiency and expanding coverage and visibility. Possibly even
creating custom instrumentation to handle business-related metrics
that you cannot get out of the box from open source tools. This
ongoing optimization ensures that observability systems remain
aligned with their SLA.

Conclusion
As we synthesize insights for all of these use cases, it is evident that
the ability to centrally drive the agenda for observability is impera‐
tive. Which parts of the observability systems should we improve?
What kinds of data are we missing? Which data can we drop, aggre‐
gate, or downsample? How much budget do we need to allocate, and
for what use cases? These considerations underscore the necessity
of centralized observability governance. Such governance would not
only steer the observability strategy but also act as an enabler and
consultant to developer teams, aiding in scalability.

In these three cases, we found the need for three common steps to
tackle observability reliability, performance, cost issues, and devel‐
oper experience. A notable gap in all cases is the insufficient analysis
of the incoming data at a granular level, leading to substantial data
growth.

A focus on aggregation and retention plays a key part in fully refin‐
ing existing data. Also, there’s a distinct lack of refinement in how
observability data is stored, highlighting the importance of down‐
sampling and dropping redundant data, particularly in automatic
instrumentation.

The operation of observability systems should be geared toward
continuous improvement, focusing on expanding visibility and
integrating custom business-level observability data. In many

28 | Chapter 2: Cloud Native Challenges in the Real World

implementations, however, observability systems are treated more
as an afterthought, a bolt-on to the developer’s toolkit, rather than as
a strategic capability.

In response to these findings, we’ve developed a new observability
model, the Observability Data Optimization Cycle (O11y DOC).
This model is structured around three cyclical steps: Analyze,
Refine, and Operate. Each step is critical and should be continu‐
ously revisited for each optimization effort. O11y DOC is not just a
framework; it’s a strategic approach that integrates observability into
the heart of organizational operations. In the next chapter, we will
delve into the intricacies of O11y DOC.

Conclusion | 29

CHAPTER 3

Strategies for Controlling
Observability Data Growth

and Complexity

In this chapter, we tackle the escalating challenges of data growth
and complexity in cloud native observability. We will introduce a
new framework to streamline and manage observability data, ensur‐
ing systems remain efficient and manageable in the dynamic cloud
native landscape.

Transitioning to our new framework, we bridge the gap between
the overwhelming data influx and the need for meaningful insights,
aiming to achieve the ideal balance in cloud native observability.

Emerging Solution Using
a Repeatable Framework
In Chapter 1, we delved into the complexities of cloud native
observability, highlighting a paradoxical increase in costs along‐
side diminishing business outcomes. We introduced the concept
of the Goldilocks zone in cloud native observability, an optimal
state where costs are controlled while maximizing business value.
This zone represents the sweet spot between excessive data that
overwhelms systems and insufficient data that hinders insightful
decision making.

31

1 “What Is FinOps?” The FinOps Foundation, https://www.finops.org.

Chapter 2 further explored the practical challenges in achieving this
balance, emphasizing the need for a strategic approach to manage
the deluge of observability data without compromising on system
performance and reliability.

We have developed a repeatable, standardized, and vendor-agnostic
framework based on these insights. This framework is inspired by
the principles of the FinOps framework, renowned for its effective‐
ness in the financial management of cloud services. Our framework
is designed to systematically address the key challenges of cloud
native observability discussed in Chapter 1.

Using FinOps as an Inspiration
FinOps is a cultural practice. It’s a way for teams to manage their
cloud costs, where everyone takes ownership of their cloud usage,
supported by a central best practices group. Cross-functional teams
in engineering, finance, product, etc., work together to enable faster
product delivery, while at the same time gaining more financial
control and predictability.1

In this new world of cloud native, FinOps was developed to rein in
costs. However, we do not have such a model for the observability
space. The idea is simple: we want the cost of observability data
not to exceed the value it is providing to the organization. Most
practitioners think the observability data they are gathering will be
useful later on. However, more often than not this is not the case,
and the observability data is forgotten.

Moreover, it’s hard to identify which teams or observability data
is causing the spikes in cost and decreased signal-to-noise ratio.
Our strategic approach will help you avoid the endless game of
whack-a-mole to decrease cost and improve performance.

It is analogous to cleaning out your garage after you have already
accumulated all the tools (observability data). The difficulty comes
with teams not thinking about the allocation in observability
capacity, mostly because they are not acutely aware of the cost asso‐
ciated with storing and querying such observability data.

32 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

https://www.finops.org

The problem starts at scale. When people are just starting with
cloud native observability, the data is not that complex, and they
have less of it. However, most mature organizations do not under‐
stand what observability data they have, and they lack control over
how much data they have or where it is being used.

As shown in Figure 3-1, using the FinOps framework as an inspira‐
tion, we devised a new approach that we call the Observability Data
Optimization Cycle (O11y DOC).

Figure 3-1. The Observability Data Optimization Cycle

Observability Data Optimization Cycle
A key consideration before beginning your O11y DOC is buy-in.
You need a centralized governance structure that drives accountabil‐
ity within individual development teams and allocates priorities
across workloads.

Observability data costs are becoming a significant budget item
and increasingly unpredictable. Everyone needs to understand
their usage and take ownership of their allocation of observability
capacity. We propose that a centralized governance structure works
best to address these issues.

Observability Data Optimization Cycle | 33

Step 0: Centralized Governance
A centralized governance removes confusion on ownership and
aligns incentives. As you go through the process of O11y DOC,
more and more decisions need to be made. A clear centralized gov‐
ernance structure allows you to make informed decisions balancing
trade-offs such as cost, telemetry capacity, and use cases.

We encourage the team consuming these services to communicate
what kind of capacity it needs to improve its outcomes. After all,
the team building the services, henceforth known as the independent
team, knows how best to observe the services it is building.

Autonomy and Allocations to Increase Responsibility
and Improve Responsiveness
Historically, developers have not had insight into the costs of
observability systems. However, until the data explosion mentioned
in Chapter 1, this lack of knowledge was not a dire problem.

Independent teams can deploy asynchronously and create high vol‐
umes of observability data. The two big implications are cost and
performance for the observability system as a whole. Since the com‐
pute, storage, and cost of the system is a common resource, if one
team uses too much of it, there is a risk that other teams then get
crowded out and can no longer use the observability system.

Making teams aware of the impact of their decisions allows them to
be empowered to make localized optimizations. The teams will get
allocations that they can manage and use.

The carrot is that the better the teams use their allocation, the more
allocation we can give them. The stick is the actual allocation: if a
team perpetually breaks the quota, then the team might be using
more than they should.

In short, there should be autonomy for the independent team to
make decisions while informing the centralized governance of their
requirements, thus empowering each team to carry out their respon‐
sibilities and get the support they need.

34 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

Usable Capacity by Allocation to Optimize Use Cases
Fundamentally, the question is how much can you have and how
much can you do with it. As we previously defined via analogy, use
cases are the activities the independent team uses for its allocation.

For example, let’s say you have a team—we’ll call them team 1—
that supports cart platform services (Figure 3-2). Team 1 currently
supports three use cases: order db monitoring, cart frontend mon‐
itoring, and inventory backend monitoring. However, to fully sup‐
port the end customers, team 1 requires two additional use cases:
recommendation backend monitoring and shopping analytics event
monitoring.

Figure 3-2. Example of a centralized governance structure

Step 0: Centralized Governance | 35

You want to empower the teams to self-service because they know
best how to optimize usable capacity for their individual use cases.
To further use the above example, team 1 can squish the recommen‐
dation backend monitoring and share the capacity with the inven‐
tory backend monitoring. Meanwhile, team 1 can raise a request to
create the shopping event analytics monitoring to get an additional
capacity.

In effect, you created an optimization by empowering the independ‐
ent team to make localized decisions. An equation about cost would
look like this:

total cost = total capacity

However, because team 1 has optimized for the cost by grouping use
cases, the equation would be as follows:

optimized cost = total capacity − total capacity
grouped use cases

Centralizing governance while providing use case autonomy will
allow for an optimized cost by empowering the individual inde‐
pendent team to make decisions.

Using Observability Team as Consultants
Instead of as Bottlenecks
While the teams are empowered, they still have the support of the
observability team. The observability team acts as the consultants or
centers of excellence that can guide best practices and make recom‐
mendations to increase allocation based on data. Whereas before the
observability team was seen as a bottleneck before going live, giving
teams autonomy will change the perception from a bottleneck to an
enabler.

Autonomy changes the observability problem from a centralized
problem to a decentralized problem distributed across the teams.
Teams can optimize locally for their use cases, rather than continu‐
ally push the observability team to make changes. This culture of
autonomy is a huge shift in the approach that most teams work with,
but one that the O11y DOC concept needs to succeed.

36 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

In conclusion, step 0 is to find the correct balance between three
axes—cost, use cases, and capacity—by a centralized governance
structure. If you buy more capacity, you increase the cost, which
you can allocate to use cases. On the other hand, if you buy less
capacity, you minimize cost. Finally, you need your teams to be
more empowered to allocate use cases economically by grouping
useful data.

Framework Components
The O11y DOC is a framework to deliver the best possible observa‐
bility outcomes at scale while controlling costs. The following are
the defined stages of the O11y DOC:

1. Analyze
Identify key cost drivers, data sources, and areas of inefficiency
in cloud native observability to optimize data handling, aligning
cost to value and understanding the utility of the data.

2. Refine
Give teams tools like shaping tools and transforming tools to
reduce the amount of data; this increases the signal-to-noise
ratio and decreases cost.

3. Operate
Develop real-time mechanisms to detect anomalies, inefficien‐
cies, and data quality issues in observability data streams.

Step 1: Analyze
The first step of the O11Y DOC cycle is Analyze. Two key areas you
need insights on are the flow of observability data traffic into your
system and usage.

Understanding your observability data traffic volume and usage will
allow you to make intelligent, data-driven decisions about how to
Refine (step 2) your data.

Traffic Analysis
For effective traffic analysis, you need to be able to analyze your
observability data and all its dimensions in real time. Having a real-
time view of the data flowing into your system helps you understand

Step 1: Analyze | 37

how often applications emit data, troubleshoot sudden spikes in
ingest rates, and ensure all the data you want to collect is being
collected.

Using metrics as an example, you should be able to view all the
labels (or tags) along with:

• The number of unique values for each label•
• The percentage of metrics you’re viewing that have the match‐•

ing label
• The metrics that contain the label•
• The volume of data that these metrics contribute to storage•

This information allows you to rank and group labels and metrics to
understand how they contribute to cost and where they are coming
from. For example, ranking labels based on the number of unique
values from highest to lowest allows you to quickly identify your
high-cardinality labels and their associated metrics.

Usage Analysis
Usage analysis is about understanding your observability data’s cost
and utility. It should give you insights into how the data is being
used, including which dashboards and alerts it shows up in, which
specific users are querying that data, when, and how often.

Combining Traffic and Usage Analysis to Make Decisions
When you combine traffic analysis with usage analysis, you can now
start to understand the value your observability data delivers. There
are few hard and fast rules when it comes to determining value.
Outside of identifying unused data, which provides zero value, it’s a
function of your budget and the insights the data delivers, and every
organization will be different.

You will need to think of this on a spectrum, as depicted in Fig‐
ure 3-3. You may be able to assign values depending on what is
important to your organization and the tools you are using. Still, as
we said, it will vary depending on the organization.

38 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

Figure 3-3. Usefulness versus cardinality spectrum analysis (source:
courtesy of Chronosphere)

At the extreme end, it’s pretty easy to decide what to do. You will
want to drop data that has not been used. Business critical data or
frequently used data you will want to optimize using aggregations.
But there will always be a middle ground where you will want to
spend most of your time analyzing the cost versus value that your
observability data delivers.

Output of Analyze Step
Once you have identified the data you want to drop and the data you
want to optimize, it’s time to look at the tools available to refine the
data to align the cost-to-value ratio.

In Chapter 2, we talked about how one organization analyzed their
observability system to proactively detect issues that align with the
O11y DOC’s principles.

Step 2: Refine
Refining observability is all about shaping and transforming the
observability data. While Analyze will allow you to understand your
data’s quantified cost and value, the Refine step is all about aligning
those costs to value.

Step 2: Refine | 39

There are multiple ways to refine the observability data, the easiest
being simply dropping the data you do not need; other options
include aggregating data, setting a retention period, and downsam‐
pling data.

Dropping
Dropping can mean dropping entire metrics, but it can also mean
keeping only dimensions of your observability data that are useful to
you and aggregating the rest in place. More often than not, even if a
metric itself is very useful it will still contain dimensions that are not
useful.

Let’s assume that we have a metric that has dimensions
regulatory_body_name, status_code, and pod_name, such that the
metric looks like:

api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-1, regulatory_body_name="sec"} 100
api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-2, regulatory_body_name="sec"} 100
api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-3, regulatory_body_name="sec"} 100

If you create a policy that keeps status_code and regulatory
_body_name while dropping all pod_names in metrics such as this,
you will divide the cardinality by three. The metric will look like
this:

api_request_to_regulatory_body{status_code=200, \
 regulatory_body_name="sec"} 300

The result will be a single cardinality metric instead of three cardin‐
alities, thereby improving the overall shape of the metric.

Retention
Retention refers to the duration of storage of your observability
data. Simply put, it answers the question: how long are you keeping
your data?

Let’s say you’re collecting metrics for development environments
and retaining them for 13 months. Is that useful if the development
environment gets recycled every week? What if you retained those
development metrics for a few weeks instead?

40 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

Base your retention periods for different kinds of data on the out‐
comes you can gain by retaining it. If you reduce the retention
period for data you do not need, the overall volume will grow much
more reasonably.

Resolution
Resolution in observability refers to the frequency at which data
points are collected and recorded within a system. High-resolution
observability implies that data points are gathered more frequently,
providing a detailed, granular view of the system’s behavior over
time. This is analogous to having a high pixel density in a photo‐
graph, where more data points translate to a clearer, more detailed
image. High resolution allows for a deeper analysis of system trends
and anomalies but comes with increased storage and processing
requirements.

As systems grow and the volume of data skyrockets, storing and
processing high-resolution data can become both cost-prohibitive
and technically challenging. To navigate this, one can use techniques
like downsampling or aggregation.

Downsampling
Downsampling is a method employed to manage the challenges
posed by high-resolution data, particularly in large-scale systems.
It involves selectively reducing the frequency at which data points
are recorded, thus effectively decreasing the resolution. This process
involves choosing representative data points or averaging out the
data over longer intervals. For instance, if data resolution is every
15 seconds, downsampling to a 30-second interval would reduce the
data volume by half. This technique helps in managing storage and
processing loads but must be balanced carefully to keep the essential
context and accuracy of the observability data. Downsampling is
particularly useful when the high frequency of data collection does
not significantly contribute to a better understanding of the system’s
behavior.

In essence, while resolution is about the initial frequency of data
collection, providing a detailed view of the system, downsampling
is a subsequent step to optimize this data for efficient storage and
processing, with a focus on retaining critical information while
reducing the overall data load.

Step 2: Refine | 41

Aggregation
Aggregation refers to the process of summarizing and transform‐
ing observability data into useful observability insights. This prac‐
tice optimizes storage, accelerates query performance, and provides
clarity to the information presented to teams.

Retention and resolution mostly allow you to optimize cost; how‐
ever, aggregation does the most when it comes to increasing the
signal-to-noise ratio of your observability system. Instead of query‐
ing two or more observability cardinalities, you only need to query
one aggregated observability data that would immediately give you
insights.

Aggregation reduces observability set sizes by stripping high-
cardinality dimensions and merging them to make more useful
observability data. This is especially true for dimensions that are not
valuable.

For example, suppose you are monitoring an HTTP web service.
The web service generates observability data with a variety of
attributes: timestamp, user agent, Internet Protocol (IP) address,
request path, response code, response time, and more.

If you only care about generating insights about the divide of users
between mobile and desktop, many of these attributes, such as IP
address, request path, and response time, might not be immediately
relevant. Therefore, you can perform aggregation based on the user
agent.

Output of Refine Step
Using a combination of dropping, retention, resolution, and aggre‐
gation to curate the observability data allows for the creation of
shaping rules. Implementing these shaping rules is expected to
reduce costs and enhance the performance of the observability
system. These rules can be one-off rules or integrated to a wider
strategy to shape data. However, as the data set grows, the perfor‐
mance of the observability system can decline. It’s crucial not to
lose the context of the data being captured. A well-defined shap‐
ing rule strategy should automatically drop unnecessary metrics or
dimensions, set retention periods, and aggregate and downsample
observability data.

42 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

The art lies in retaining the context. While it’s tempting to strip away
as much data as possible for the sake of efficiency, it’s crucial that the
resultant data set still tells a coherent story of the system’s behavior.

Shaping rules, therefore, should be dynamic and adaptive. They
should set automated retention timelines, define resolutions based
on the criticality of data, aggregate where meaningful, and down‐
sample without losing the bigger picture. This holistic approach
ensures that while the raw volume of data might be reduced, its
informative value remains potent.

In essence, shaping rules transform raw observability data into a
well-structured narrative, shedding the redundant while highlight‐
ing the essential, decreasing cost, and increasing context. As Martin
Mao says: “It’s not about having less data; it’s about having more
meaningful data.”

In Chapter 2 we talked about how a social network effectively used
the Refine principles to demonstrate effective use of aggregation and
downsampling.

Step 3: Operate
Operating observability revolves around regular optimization—con‐
tinuously validating and understanding the insights generated from
your established shaping rules. Over time, circumstances and
requirements change. It then becomes crucial to ensure that the
shaping rules remain relevant and continue delivering the anticipa‐
ted value.

During this step, look for opportunities to innovate and experiment.
A fundamental question to continually address is: can the existing
shaping rules be further optimized? Refining your observability sys‐
tem and freeing up capacity should allow you to do more experi‐
ments and innovation.

In the Operate step, you also need to check whether a new shaping
rule is needed. Find out if the new shaping rule will inadvertently
affect observability system performance. Forecasting and testing
these outcomes can avert unintended consequences, ensuring that
your observability remains robust and reliable.

Step 3: Operate | 43

Expanding Visibility and Coverage
After you’ve adjusted your data to be more efficient, you can look
at more areas. At first, you might cut down on data, but later you
can use the saved space to see more. If you wanted detailed data
before but it was too expensive, now you might be able to afford it.
Remember, it’s all about balance. If you manage your data well, you
can do more with it.

Freeing Up More of the Observability Team’s Time
to Tackle Strategic Projects
The observability team will be more of a consultant rather than
having an adversarial role with other teams. Freeing them up and
helping them allows them to put on guardrails, making the observ‐
ability team a strategic team rather than a tactical whack-a-mole
team.

Conclusion
In a cloud native world, mastering observability data is crucial for
maintaining a competitive edge. Optimal observability outcomes go
beyond quick issue resolution; they involve leveraging observability
data for business innovation and enhancing customer experiences.
This chapter’s Observability Data Optimization Cycle (O11y DOC)
advocates for a systematic approach, encompassing Analyze, Refine,
and Operate, to efficiently manage costs and enhance system perfor‐
mance. It emphasizes the need for cultural change, centralized gov‐
ernance, and team autonomy in managing observability. Finally, the
O11y DOC framework outlines what is necessary to control costs
while improving the performance of your observability systems.

44 | Chapter 3: Strategies for Controlling Observability Data Growth and Complexity

CHAPTER 4

Open Source Telemetry Standards:
Prometheus, OpenTelemetry,

and Beyond

In the previous chapters we discussed how observability data has
been growing in scale while delivering diminishing business out‐
comes. We delved into real-life use cases on how well-known com‐
panies have solved observability data issues. Finally, we introduced a
new framework for reliably solving the same issue, distilling the core
principles that we have gathered from our experience solving those
real-world use cases.

In this chapter, we will explore implementations using open source
software and how open source instrumentation has increasingly
become the de facto standard for monitoring and observability in
cloud native environments. We’ll trace the evolution of this trend,
highlighting the pivotal roles of Prometheus and OpenTelemetry
(OTel) in shaping the landscape. These tools have simplified the
collection and analysis of vast amounts of telemetry data and estab‐
lished new benchmarks for flexibility, scalability, and community-
driven development in observability.

Instrumentation Before Prometheus and OTel
Before the industry standardized on Prometheus and OTel, many
companies were forced to use proprietary collection solutions, such
as AppDynamics, Dynatrace, or New Relic. These vendors control

45

the instrumentation and aggregation of telemetry using agents,
which are software processes that run alongside an application to
collect data and then send it to an external server.

If you are running an AppDynamics observability setup, you have
no choice but to use the AppDynamics agent to send telemetry
to their system, as shown in Figure 4-1. This is called agent-based
application instrumentation. Applications typically need to install
a software library or software development kit (SDK) to run these
agents and send the data back to the aggregation server.

Figure 4-1. Applications instrumented using agents

In addition to proprietary agents, the data formats used by the
agents are also proprietary. These proprietary data formats mean
that, for all intents and purposes, your data is locked into the ven‐
dor. For example, you cannot easily migrate from one vendor to
another without losing all dashboards and alerts that were built by
the original vendor, making migrations labor-intensive and wasteful.

Agents are also largely noninteroperable. This means that if you
rely on AppDynamics, the same agents cannot easily aggregate those
same metrics into New Relic’s system.

Agent-based systems use the same system resources as the applica‐
tion and in some cases can slow down or even crash applications.
Site reliability engineering (SRE) teams can’t observe when agents
cause performance issues since they are using the same agents to
send the data back to the aggregation servers.

Data Collection Is Controlled by Users
In 2012, while most organizations were making the switch to micro‐
services architecture, SoundCloud ran into a set of challenges while
scaling their existing monitoring system. To solve these challenges,

46 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

1 “Prometheus Graduates Within CNCF,” Cloud Native Computing Foundation, August
9, 2018, https://oreil.ly/qt-vt.

SoundCloud created Prometheus: a way to instrument once and
output everywhere.

By August 2018, Prometheus graduated as a CNCF official project.1

An open source ecosystem was built around Prometheus largely
because of Kubernetes and its increasing ubiquity in the cloud native
space.

Because of Prometheus, most organizations running in cloud native
architectures today no longer have to deal with a myriad of tools and
agents to instrument their applications. Effectively, this moved the
data collection from being controlled by vendors to being controlled
by cloud native observability practitioners.

Prometheus
Prometheus is inspired by Google’s Borgmon monitoring system
(Borg). Instead of using a sink that pushes data to an aggregator
system, Prometheus instrumentation exposes a metric endpoint
(usually an HTTP endpoint in /metrics). The Prometheus server
scrapes the metric endpoint. While most other systems are push-
based, pushing data out toward an aggregator, Prometheus is pull-
based. This represents a major innovation: because push-based
systems must wait for servers to respond to requests, they can cause
delays and performance degradation.

Interoperability Between Different Observability Tools
Pull-based systems expose data by using a broadcast system, “lis‐
tening” to and then broadcasting data without affecting or even
notifying the system producing the data. This eliminates the
need for agents, and for most applications, its impact on perfor‐
mance is almost negligible. Figure 4-2 shows agentless metrics in
Prometheus.

The shift to pull-based metrics collection has allowed SRE teams to
better control the metrics they collect. Further, pull-based collection
allowed interoperability between different observability tools.

Prometheus | 47

https://oreil.ly/qt-vt
https://oreil.ly/3oaNd
https://oreil.ly/Dl8Rl
https://oreil.ly/Dl8Rl

Figure 4-2. Prometheus’s exposition format, supported by vendors

Standardization to Prometheus
The caveat is that for a pull-based system to be effective, it needs
a standard data format to eliminate the need for conversion. Simi‐
lar to Borg, Prometheus created its exposition format, Prometheus
exposition, then wrote clients that use it to expose metrics simply.

Since Prometheus shifted the responsibility to clients outputting a
standard data format, it created a system where whoever supports
that format can use the data. This created a cottage industry of
every software that outputs data supporting Prometheus’s exposition
format, resulting in massive adoption and standardization around
Prometheus.

In essence, you write once, and you can output anywhere that sup‐
ports the Prometheus exposition format!

Prometheus Reliability
With Prometheus, metrics instrumentation is part of the application
rather than a separate process, as shown in Figure 4-3. This contrib‐
utes to greater reliability.

48 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

https://oreil.ly/TSjnz
https://oreil.ly/TSjnz

2 Anne McCrory, “Ubiquitous? Pervasive? Sorry, They Don’t Compute,” Computerworld,
March 20, 2000, https://oreil.ly/juHHV.

Figure 4-3. Push-based agent instrumentation versus pull-based agent‐
less instrumentation

Another contributor to Prometheus’s reliability is the nature of the
pull model. The pull model is inherently reliable because if the col‐
lector is down, Prometheus simply waits longer to pull the metric,
while the push model will fail.

Prometheus thus solved the two big problems: reliability and collec‐
tion scalability. It has since been so widely adopted that most open
source tools in the cloud native ecosystem support Prometheus
metrics exposition.

Its pervasiveness became especially evident when cloud native eco‐
systems started to build tools and standards on top of Prometheus.2

This means that any tool sets or vendors that are compatible with
Prometheus are now forced to be interoperable with each other.

Prometheus tools and standards give SRE teams greater control over
their metrics instrumentation. What impact has this had on the
cloud native ecosystem?

Prometheus | 49

https://oreil.ly/juHHV

Prometheus: The Good
For good or ill, the industry is adopting Prometheus and it has
become the de facto standard for cloud native observability for
metrics. After Kubernetes, it was the second project to attain “grad‐
uated” status from the CNCF, which requires meeting stringent
criteria.

Prometheus itself has many advantages, the foremost of which are:

Dimensional metric data model
Prometheus uses a dimensional metric data model that allows
flexibility when labeling metric data. You can use these dimen‐
sions to query metrics using the PromQL language, contrast‐
ing with StatsD, which primarily employs a simplistic model
focusing on counters and timers without inherent support for
dimensional data or a specialized query language.

Service discovery
Prometheus can use service discovery native to the system
Prometheus is monitoring. For example, Prometheus can self-
discover pod endpoints using Kubernetes’s own service discov‐
ery APIs.

Deep integration between PromQL and alerting
Prometheus has a built-in Alertmanager subsystem that can
push to paging systems like PagerDuty and Slack. Alertmanager
uses PromQL to build alerts and thresholds.

Mature specification
Prometheus has reached a level of maturity that makes it a
stable and reliable solution for many organizations.

Prometheus: The Not-So-Good
However, as with all good systems, Prometheus has disadvantages as
well:

Generic use case
The use case for Prometheus is too generic: it isn’t built for
any one type of application, so you have to configure it for
your specific system, including creating metadata labels for each
metric type. The relabeling configuration becomes complex as
you collect more metrics.

50 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

https://oreil.ly/zNdVU

Annotation leads to complexity
The more dimensions your metrics have, the more complicated
it gets to configure Prometheus scraping because you have to
coordinate collection between multiple instances. You can solve
this problem easily by using tools like PromLens and annotating
metrics only when necessary.

Hard to operate
Prometheus is hard to operate. Prometheus runs as a single
binary, which means it’s easy to stand up but harder to keep
running on unexpected errors. Having Prometheus run in pro‐
duction means tweaking and fine-tuning to keep it running.
You end up spending time on Prometheus that you could
(and should!) be spending on your core business applications
instead.

Horizontal scalability
The biggest disadvantage of Prometheus is that its server uses
vertical scaling.

In general, there are two types of scaling: horizontal and ver‐
tical. Horizontal scaling, also sometimes called fan-out scaling,
is based on multiple servers, while vertical scaling is based on
the resources of one server. Most distributed systems are scaled
horizontally because it is faster and more cost-effective.

Prometheus, by default, lacks horizontal scaling capabilities,
leading to reliance on vertical scaling for large deployments.
This approach necessitates the use of powerful servers with
extensive CPU and memory resources. The approach poses
another significant challenge as well: it creates a single point of
failure, as an outage in the server’s region can disrupt the entire
system. This is particularly problematic in cloud native environ‐
ments where reliability is paramount. Additionally, managing
such a setup is complex and resists automation, making it more
akin to treating the server as a “pet” rather than “cattle,” as per
the popular cloud analogy. Finally, the scalability of Prometheus
is inherently limited; even in the cloud with its vast array of
compute resources, there’s a ceiling to how much a single server
can be scaled vertically.

That said, there are ways to scale Prometheus servers horizon‐
tally. Projects such as Thanos, Cortex, and Mimir aim to add
horizontal scalability to Prometheus. However, once you reach

Prometheus | 51

the point where you need to scale Prometheus horizontally, we
suggest you look into fully managed options. The complexity of
running horizontally scaling Prometheus usually outweighs the
benefits of maintaining these systems, with very few exceptions.

OpenTelemetry
As more organizations and practitioners standardized to Prome‐
theus for their metrics, another question arose. What about logs
and traces? This leads to the challenge of how to deal with the
fragmentation of tools to generate telemetry for logs, metrics, and
traces.

Many tools and solutions were crafted to solve this challenge; the
most well-known ones were OpenCensus and OpenTracing. Open‐
Tracing focused on telemetry for tracing, while OpenCensus focused
on telemetry for both metrics and tracing.

By 2019, a committee was formed that aimed to combine the efforts
of OpenCensus and OpenTracing into building a standardized and
unified set of tools, which was dubbed OpenTelemetry.

What Is OTel?
OTel is an observability framework and toolkit designed to create
and manage telemetry data such as traces, metrics, and logs. Cru‐
cially, OTel is vendor- and tool-agnostic, meaning that it can be used
with a wide variety of observability backends.

OTel generates, collects, processes, and exports telemetry. However,
OTel is not a backend system for logs, metrics, or traces; you still
need a system to send the telemetry generated by OTel for further
analysis or safekeeping.

OTel is not one system like Prometheus; it’s an umbrella project
that combines the effort of building multiple subsystems to generate
high-quality, ubiquitous, and portable telemetry to enable effective
observability.

The OTel Specification
Unlike Prometheus, which inadvertently built a standard, OTel is
deliberately building a standard, the OTel specification, that can be
used for any implementation.

52 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

https://oreil.ly/vLckv
https://oreil.ly/lRpOL
https://oreil.ly/-XJJn
https://oreil.ly/ppeXH

OTel SDK
OTel SDK, also known by engineers as client libraries, allows us
to create telemetry that we can install depending on which program‐
ming languages we are writing our application in. The client libra‐
ries can either generate telemetry automatically or manually.

Libraries have built-in automatic instrumentation. For example,
HTTP metrics, gRPC tracing, and even Express.js metrics are auto‐
matically generated when you install these libraries and set them up
in your JavaScript application. However, there are edge cases; not
every library would automatically generate metrics, and you would
need to configure them.

Manual instrumentation uses primitives that the client libraries will
allow you to use to generate specific signals about your application
or to add contextual metadata to the metrics, spans, or logs emitted.

OpenTelemetry Collector
The OpenTelemetry Collector functions as an intermediary for tele‐
metry data, equipped with three core components: an ingestion
endpoint that receives data and also translates incoming telemetry
into OTel formats (OpenTelemetry Protocol [OTLP] over HTTP,
OTLP over gRPC); a processor that handles filtering, batching, and
transforming the data; and an exporter that transmits the processed
telemetry data to various backends.

There are also multiple vendor exporters that you can use depend‐
ing on where you want your telemetry data to end up. Additionally,
there is a growing list of exporter, collector, receiver, and client
instrumentation libraries in the OpenTelemetry Registry.

OTel: The Promise
OTel can be used for instrumenting logs, metrics, and traces to
emit telemetry via a standard format. It promises a single unified
standard for observability, simplifying the telemetry process, and
supports multiple vendors and open source software (OSS) with no
vendor lock-in. Further, it allows extensibility. Developers can build
upon the specifications to extend OTel to fit their specific needs.

The willingness of popular vendors, libraries, and languages to sup‐
port OTel means it’s easier for developers to emit telemetry in OTel
format.

OpenTelemetry | 53

https://oreil.ly/A4KXT
https://oreil.ly/_VeAB

Another promise of OTel is the ability to correlate signals from
multiple sources, like logs to metrics correlation, metrics to traces,
and even logs and metrics to traces, using a standard specification.
Imagine jumping into one correlation ID for a failed HTTP request
and finding all the downstream logs, metrics, and even traces!

OTel: The Reality
The learning curve to fully understand all the components of OTel
and effectively use it in production can be steep, especially for prac‐
titioners who are used to working with proprietary observability
systems.

Another important difference to note is that, unlike Prometheus,
which uses a pull system, OTel uses a push system with a collector.

Limitations of maturity
Being an umbrella project, OTel has multiple levels of maturity
depending on which programming language you are using and what
types of signal you want to emit.

For example, as of this writing in November 2023, the Python trace
and metric client libraries are stable, but logs are experimental.
Golang traces are stable, but metrics are mixed, and logs have not
yet been implemented. To get the full level of maturity, visit the
OpenTelemetry status page.

The current limitations of maturity mean that fully adopting OTel
across telemetry types will be an ongoing project until all the lan‐
guages and frameworks your organization supports are stable.

Backend support
OTel is vendor neutral; however, different backends offer varying
levels of support for OTel. Backends may not fully use OTel’s
capabilities.

Where to Start with OTel
Because of the increased complexity, we suggest those interested in
adopting OTel begin by just running the collector. Simply running
the collector will give you a good feel for how the rest of the OTel
ecosystem works.

54 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

https://oreil.ly/nhJa4
https://oreil.ly/qX2T2
https://oreil.ly/xQOO_
https://oreil.ly/xQOO_
https://oreil.ly/xQOO_

Having the collector will allow you to start utilizing telemetry
prewritten by tools you are already familiar with. For example, if
you are running NGINX Ingress Controller, you can follow the
Kubernetes NGINX Ingress OpenTelemetry guide to start sending
telemetry to your collector.

Once you run a collector, you will want to try your hand at configur‐
ing auto-instrumentation in the collector to see what telemetry you
can get from your system out of the box. Additionally, we suggest
you try to do Chronosphere’s walkthrough of OTel using JavaScript
and automatic instrumentation or view a practical demonstration of
OTel in action.

Implications of OTel’s Approach
For bigger organizations with a greater need for flexibility in their
telemetry systems, OTel is a better way than proprietary or vendor-
specific collectors to handle telemetry. OTel provides a standard,
flexible, and interoperable way to generate telemetry.

Being a standard across the industry, OTel allows practitioners to
better their portability of skills when moving across different organ‐
izations or divisions of a bigger organization. OTel lock-in becomes
less of a concern for practitioners.

The ability to correlate data using OTel is perhaps its greatest advan‐
tage. There is no other system in the cloud native observability space
that has that potential out of the box.

But as with any new standard, there is an adoption curve. The trick
is to understand when OTel is stable enough for your organization
and when the complexity of adoption is minimal enough for adopt‐
ing OTel.

As more and more systems adopt OTel, it will become an indispen‐
sable project that allows all practitioners to better organize and
standardize telemetry systems.

A key weakness in the adoption of OTel is perhaps the erratic sup‐
port for logs, where Fluent Bit can come in to fill the gap.

Fluent Bit
Fluent Bit is a vendor-neutral, open source solution that ena‐
bles organizations to connect any data source to any destination.

Fluent Bit | 55

https://oreil.ly/B5_q4
https://oreil.ly/9pxa8
https://oreil.ly/9pxa8
https://oreil.ly/qGVQa
https://oreil.ly/qGVQa

Organizations leverage Fluent Bit to create observability pipelines
that can collect, process, and route data. It has a fully pluggable
architecture that allows users to connect telemetry sources with
various other destinations and perform many different types of pro‐
cessing (such as filtering, parsing, etc.) on the data while in flight.

Fluent Bit began as an outgrowth of the Fluentd project, which
was created by Sadayuki Furuhashi in 2011 as an open source data
collector that lets users unify log data collection and consumption.
Fluent Bit was created in 2014 as a more lightweight, performant
version for resource-constrained environments.

With over 12 billion downloads, the Fluent Bit project is one of
the most widely adopted solutions to address logging challenges
in cloud native environments. It includes support for OTel and
Prometheus as both an input and an output, supports connectors
that allow it to integrate with hundreds of other systems, and allows
extensibility via plugins written in WebAssembly and Golang. The
synergy between the broad telemetry capabilities of projects like
OTel and Fluent Bit’s specialized log-processing abilities allows for
a solution that works for any scale of organization—from a light‐
weight system for transforming log entries to structured metric
data to large-scale processing of logs via backends like Kafka or
OpenSearch. Fluent Bit is available as a default logging option in the
environments of most cloud service providers.

56 | Chapter 4: Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond

Conclusion

Open source projects have transformed the way we standardize the
emission and storage of observability signals.

With their introduction, the landscape of cloud native observability
has evolved. The challenge is no longer solely about data capture;
emitting telemetry has become more straightforward than ever.

These projects aren’t silver bullets that magically address every
observability concern. Instead, they serve as standards, enabling us
to harness these observability signals efficiently. The overarching
goal is to utilize these tools to foster improved business results,
though the path to mastery may come with a pronounced learning
curve.

The monitoring and observability landscape has changed greatly
over the past three to five years. System architectures today are
sufficiently different from their pre–cloud native counterparts to
demand a new paradigm. This is born from radically rethinking, as
an industry, how we build and implement monitoring systems.

To refine our focus and make a discernible impact, our thinking
about cloud native observability must pivot away from the “three
pillars” we discussed in our previous report, Cloud Native Monitor‐
ing, and toward the three phases of observability we’ve outlined in
this report. These three phases allow for a goal-driven, pragmatic
approach to cloud native observability that emphasizes remediating
problems and improving business outcomes.

The three phases of observability help us focus on what matters
most. However, it is indeed difficult to discuss observability data
without noting that such data in the cloud has grown exponentially.

57

https://oreil.ly/-OOkA
https://oreil.ly/-OOkA

This growth has led to higher costs while potentially decreasing
business outcomes.

In response, we’ve defined the Goldilocks zone of observability,
where we retain the essential observability data—not too much and
not too little—to fully understand our systems. However, achieving
the Goldilocks zone of observability is challenging without a proper
framework. That’s why we introduced the O11y DOC. This frame‐
work helps us delve into the nuances of implementation, covering
technical details, aspects of governance, and process.

Using O11y DOC, we can maximize the value of our data while
keeping costs low. We’ve discussed examples and case studies where
large organizations have implemented O11y DOC with the support
of fully managed platforms such as Chronosphere.

We recommend fully managed monitoring solutions over self-
managed ones because the latter can be complex and costly. With
platforms that natively support and promote the principles in O11y
DOC, we can accelerate optimization using O11y.

Building an effective observability function is all about strategy.
Keep your eyes on the desired outcomes, and your cloud native
observability journey will have a promising start.

58 | Conclusion

About the Authors
Kenichi Shibata is a cloud native architect at esure, specializing
in cloud observability, security, cloud migration, and cloud native
microservices implementation and architecture. He has worked in
multiple global industries ranging from banking and insurance to
media and retailing across Europe and Asia. He and his family are
based in the United Kingdom.

Rob Skillington is the cofounder and CTO of Chronosphere. He
was previously at Uber, where he was the technical lead of the
observability team and creator of M3DB, the time-series database
at the core of M3. He has worked in both large engineering organi‐
zations such as Microsoft and Groupon and a handful of startups.
He and his family are based in New York City, where he mainly
spends weekends exploring all of New York’s playgrounds and also
following his wife’s jazz adventures.

Martin Mao is the cofounder and CEO of Chronosphere. He was
previously at Uber, where he led the development and site reliability
engineering (SRE) teams that created and operated M3. Prior to
that, he was a technical lead on the EC2 team at Amazon Web
Services and has also worked for Microsoft and Google. He and his
family are based in Seattle, and he enjoys playing soccer and eating
meat pies in his spare time.

	Cover
	Chronosphere
	Copyright
	Table of Contents
	Chapter 1. The Cloud Native Impact on Observability
	Challenges of Cloud Native Observability
	Deep Dive into Observability Data
	Observability Data Is Growing in Scale
	Understanding Cardinality and Dimensionality
	Cloud Native Systems Are Flexible and Ephemeral

	The Goldilocks Zone of Cloud Native Observability
	Cloud Native Environments Emit Exponentially More Data Than Traditional Environments
	Delivering Reduced Business Outcomes
	Observability Practitioners Lose Focus
	Increasing Cost of Observability Data

	The Cloud Native Impact
	Slower Troubleshooting
	Tools Become Unreliable
	Use Context to Troubleshoot Faster

	The Three Phases of Observability: An Outcome-Focused Approach
	Remediating at Any Phase, with Any Signal
	Conclusion

	Chapter 2. Cloud Native Challenges in the Real World
	Impact of Uncontrolled Data Growth on System Performance
	Controlling Cost
	Case Study 1: Improving Performance While Gaining Huge Cost Savings
	The Challenge
	Approach

	Impact of Uncontrolled Data Growth on Observability Reliability
	Poor Developer Experience Caused by Poor Observability Data
	Case Study 2: Increased Observability Reliability and Improved Developer Experience
	The Challenge
	Approach

	Making Way for Fast-Paced Innovation
	Regulatory Requirements
	Case Study 3: Navigating Observability Challenges in Balancing Rapid Fintech Growth and SLA Compliance
	The Challenge
	Approach

	Conclusion

	Chapter 3. Strategies for Controlling Observability Data Growth and Complexity
	Emerging Solution Using a Repeatable Framework
	Using FinOps as an Inspiration
	Observability Data Optimization Cycle
	Step 0: Centralized Governance
	Autonomy and Allocations to Increase Responsibility and Improve Responsiveness
	Usable Capacity by Allocation to Optimize Use Cases
	Using Observability Team as Consultants Instead of as Bottlenecks

	Framework Components
	Step 1: Analyze
	Traffic Analysis
	Usage Analysis
	Combining Traffic and Usage Analysis to Make Decisions
	Output of Analyze Step

	Step 2: Refine
	Dropping
	Retention
	Resolution
	Downsampling
	Aggregation
	Output of Refine Step

	Step 3: Operate
	Expanding Visibility and Coverage
	Freeing Up More of the Observability Team’s Time to Tackle Strategic Projects

	Conclusion

	Chapter 4. Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond
	Instrumentation Before Prometheus and OTel
	Data Collection Is Controlled by Users

	Prometheus
	Interoperability Between Different Observability Tools
	Standardization to Prometheus
	Prometheus Reliability
	Prometheus: The Good
	Prometheus: The Not-So-Good

	OpenTelemetry
	What Is OTel?
	The OTel Specification
	OTel: The Promise
	OTel: The Reality
	Where to Start with OTel
	Implications of OTel’s Approach

	Fluent Bit

	Conclusion
	About the Authors

