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Observability,  
what is it good for?

Back in the day, monitoring was simple. Proprietary monitoring agents sent infrastructure-
level metrics like CPU-usage and another agent sent logs to a syslog server to trawl for error 
messages. 

However, as applications moved from virtual machine-based monoliths to cloud native 
microservice architectures running in the cloud, understanding the application and system state 
became much more difficult, requiring a more flexible approach to monitoring. Prometheus, the 
CNCF-backed open source metrics platform, has grown into the de-facto standard for monitoring 
cloud native environments, and we’ve moved from proprietary agents to open standards with 
many software components being pre-instrumented for quick and easy integration. Its popularity 
is, among other things, due to its inherent flexibility to explore data at will, arbitrarily querying the 
data to show different slices and views of data as teams investigate issues.

This ubiquity of metrics data allows teams to look at their applications and underlying systems 
without a fixed set of limited metrics. Instead teams are able to dive into any misbehaving part 
of a system, investigating complex emergent behaviors and the longer tail of failure modes in 
complex cloud native microservice architectures as they happen and solving problems caused 
by ephemeral combinations of corner-case conditions and bottlenecks.

You need a system that lets you arbitrarily look at different parts of the system in a much more 
dynamic, flexible, and ephemeral way than you viewed a production application. This requires 
more than just infrastructure-level metrics, or just logs, or just traces of user requests across 
the system. Legacy systems that provide them are not enough to be able to dive into those 
emergent behaviors and figure out what’s going on in your application stack.
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As companies adopt container-based and cloud native application architectures, observability 
becomes harder and harder to manage due to the exponential growth of metrics data, 
as not only the number of monitored services increases, but also because each service is 
instrumented too broadly enough to observe it adequately. Observability teams are scrambling 
to cope with this growth, while trying to continue to provide meaningful insights from the 
observability data to teams quickly and accurately.

The problem is, as the amount of metrics data being produced grows, the pressure on the 
observability platform grows, increasing cost and complexity to a point where the value of 
the platform diminishes. This is especially true with Prometheus, due to its inherent limitations 
to operate at scale. Simply put, Prometheus can only handle so much data before it starts to 
break down or forces you to stand up a second (or third, fourth… you get the idea) instance, 
preventing teams from gaining visibility and insights from metrics data.

So how do observability teams take control over the growth of the platform’s cost and 
complexity, without dialing down the usefulness of the platform? In this whitepaper, we’ll talk 
about optimizing the cost and value of your observability without compromising insights.

Observability’s place in the landscape
But what are the insights derived from an observability platform? What value does the platform 
bring? Let’s dive into the fundamentals of observability, first. 

DevOps teams use feedback loops to understand the production application’s operational 
status. Observability, in modern, cloud native software development scenarios, is the practice 
of being able to understand emergent behaviors of the application in production to increase 
reliability, security, and performance. Observability helps teams get real-time visibility into 
how live users interact with the production system and use that insight to develop fixes and 
improvements.

And this is important, because modern, cloud native applications rarely fail outright. Usually, 
a failure affects only a part of the application and cascades across dependencies in 
unpredictable ways, creating issues with performance and reliability in unique ways that  
will likely only happen once. 

Your Company Customers

Delivery Pipeline

BUILD TEST RELEASE

Feedback Loop

MONITORPLAN

Image 1: the DevOps loop
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The business value of observability is thus immediately clear: to provide clarity and insights into 
a system’s state by monitoring signals from the application’s execution, behavior, internal states, 
communication between services, and components. The goal is to optimize the application’s 
business (and technical) performance, cost, reliability, security, and more. Without adequate 
observability of their application stacks, teams are flying blind and won’t be able to respond to 
issues in real time, creating down-time, loss of revenue, or damage to reputation.

In microservices-based, container-based cloud native architectures, the amount of services 
working together to create a single user-facing application can be staggering, and the amount of 
dependencies are too much for any human being to fathom. This creates inherent complexities 
that observability platforms have to deal with, and have to unravel, to provide any value to its users. 
The amount of data produced by these dynamic, ephemeral, and ever-changing landscapes of 
services can be so large, it becomes nearly impossible to analyze and derive valuable insights 
from it. Simultaneously, these complexities result in a greater need to correlate and interconnect 
infrastructure, applications, and business metrics.

A common misconception of collecting telemetry is that ‘more is better’. It is not. 

As image 2 shows: the signal is lost in the noise completely. For anyone triaging a problem, this 
amount of data does not meaningfully contribute to finding the root cause, and likely has the 
inverse effect. It evidently shows that while the underlying data is important, teams need the ability 
to separate signal from noise. By combining different types of data and correlating data, a pattern 
emerges that helps build a picture of the state of the system, and helps engineers to see a path 
towards resolution of the issue at hand.

While teams may take the path of least resistance and collect lots of data on their service, the 
team responsible for the observability platform has to balance the cost of collecting and storing an 
amount of data with the value of the insights derived from it, seeking the optimal balance between 
the two.

And given that this optimal balance varies between different services due to business value, scale, 
and other factors, the platform team has to account for these differences across services, and help 
teams responsible for each of the services find that balance. Different teams have different needs, 
with some wanting to monitor different aspects of their application or, requiring different levels of 
detail and insights.

Image 2: Signal is lost in the noise
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Luckily, the platform team has a few knobs to turn up or down, the collective of which helps teams 
find the optimal balance —and find the answers to how they can control what metrics data our 
observability platform ingests, as well how they can limit the impact of querying the metrics data.

Cardinality, resolution, and granularity
Taking back control over the amount of data being collected is not an easy task. Teams running 
apps in production often err on the side of caution, collecting more data than they think they need, 
in case they do need it. Or they forget that they started collecting a specific metric or label in the 
past, and it’s being stored, but not used. Or, they made false assumptions about how much data a 
metric would generate.

Often, these teams don’t feel the pain of collecting too much data, as they’re not the ones running 
the observability platform. However, they are the ones that feel the impact of too much telemetry, 
as the observability platform’s performance trends downhill and either their queries slow down, or 
the ingestion of data slows down to a point where it takes too long for ingested data to be available 
for querying.

Either way, performance is key, and it’s the observability team’s responsibility to keep performance 
of the platform at adequate levels. This simply means they must balance the amount of data 
collected with the cost and value of that data to drive insights for those same app teams.

So what can teams do to limit the amount of data collected, without impacting their ability to 
answer questions about the state of their systems? In order for us to answer these questions, we 
must understand these key concepts:

Dimensions are the attributes or properties that you are collecting data on. Metrics can have 
an arbitrary number of dimensions: Customer ID, Shopping Basket Size, Transaction ID Pod, Region, 
Service Name, and other items of interest to your business. Essentially, these are the keys in key-
value pairs. The smaller, or more granular, the dimension is, the more instances of that dimension 
we need to collect data on. For instance, do we measure memory usage on a cluster level (just one 
dimension), on each of the individual cluster nodes (one dimension per cluster node), or on each 
individual pod running on each individual cluster node (many dimensions per cluster node)?  
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For every key (also called labels and tags throughout this paper) 
that you add to the observability platform, the amount of data 
collected increases multiplicatively; each additional dimension 
increases the number of data by repeating the existing 
dimensions for each value of the new dimension. 

Cardinality is the uniqueness of the values of the dimensions 
you’re collecting data on.  Having two dimensions of 10 values 
each (for instance, an HTTP error dimension with ten error codes) 
isn’t much of an issue. Even using a single dimension with lots 
of possible values (like cluster name) isn’t an issue. But having 
many dimensions, some with many possible values, quickly does 
become an issue. 

It’s the multiplicative effect of the total number of combinations 
of all the dimensions’ values that defines high cardinality. In 
addition to cardinality within any given metric (defined by how 
many combinations of its dimensions we can make), the same 
concept applies to the total number of combinations across all 
metrics.

Resolution is the interval of the measurement; how often 
a measurement is taken. This is important, because a longer 
interval often smooths out peaks and troughs in measurements, 
so that they don’t even show up in the data at all; time precision 
is an important aspect of catching transient and spiky behaviors.

Retention, finally, is how long high-precision measurements 
are kept before being aggregated and downsampled into 
longer term trend data. By summarizing and collating, resolution 
is reduced, trading off storage and performance with less-
accurate data.

But why is cardinality specifically such a problem in this case? 
Well, it’s due to the fact that most, if not all modern metrics 
systems use a time-series database, which stores a unique 
time series for each and every metric that you add. And for 
every possible value for each tag or label added to a metric, 
another series is stored to disk. This leads to an explosion of data 
collected for every tag or label added, often without anyone 
consciously knowing or realizing why. For many engineers, it 
can be hard to understand that adding a single dimension 
to a metric can result in millions of additional time series 
and datapoint writes. Higher cardinality is also more useful 
for troubleshooting and being able to understand emergent 
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behaviors of the application in production to increase reliability, security, and performance. We 
need higher cardinality for the monitoring system in order to be useful. Without that sufficient level 
of detail, teams can’t get to the bottom of the issue they’re investigating.

So if we’re monitoring the consumption of potato 
chips over time, we keep tally of them every, say, 5 
seconds. This produces one time series. However, if 
we want to also keep track of what flavor each chip 
is, we add a tag ‘flavor’. This creates a new time 
series metric on disk for every one of our, say, fifteen 
flavors (natural, barbecue, sour cream & onions, and 
so on). Now imagine that each of these flavors can 
also be one of two styles (straight-cut and wavy) and 
three health options (oven-baked, lightly-salted, and 
regular). We’re now storing not one, but 15 x 2 x 3 = 90 

time series on disk. In a time-series dataset like this, the cardinality is defined by the cross-product 
of the cardinality of each key-value pair, multiplying them ‘key times value’. The more dimensions 
added, the more granular we can slice and dice the data by looking at a single dimension, a 
combination of a few dimensions (like straight-cut lightly salted but all flavors) or all dimensions.

This multiplication effect grows stronger as we add more tags and labels, especially when the 
number of unique values for a dimension is large. And if we want to track averages or percentiles 
as well, the number multiplies, again. The right indexes will help us find the flamin’ hot wavy 
oven-baked potato chips quickly. With multiple indexed columns, the number of unique values 
starts to matter – a lot. The cross product quickly becomes very large, very quickly, even if only 
one dimension has a high cardinality. This is why cardinality is an often-cited bottleneck for 
observability platforms, and one of the largest tradeoffs between the cost of an observability 
platform, and the insights it helps teams gather. And isn’t the whole point of the observability 
platform to drive insights that are more valuable than the cost and effort put into the platform? 

All of the mentioned key aspects of keeping an observability platform 
under control are sliding scales without a single, fixed optimal cut-
off point. Each has an impact on the cost and complexity of the 
platform, and the precision of the insights derived from the data. 
Simply put: more dimensions, with higher cardinality and better 
resolution means deeper insights, but at a monetary and operational 
cost to manage the complexity and volume of data. In an ideal world, 
our observability platforms can cope effortlessly with the explosion 
of telemetry. In reality, teams are forced to sample, approximate, to 
estimate, and to choose which parts of their landscape to observe 
with a fine level of precision due to the immense cost and complexity 
associated with those high levels of precision. Without adequate 
levels of precision, however, decision-making is flawed and has a  
risk of leading to wrong conclusions due to imprecise data. 

“Cardinality is an often-
cited bottleneck for 
observability platforms, 
and one of the largest 
tradeoffs between the 
cost of an observability 
platform, and the insights 
it helps teams gather.”
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And with cloud native architectures, the amount of dimensions, 
and the cardinality of those dimensions, is a few orders of 
magnitude different than with monolithic, VM-based systems.

This simple (albeit overly simplistic) example shows that moving 
from 300 VMs to 12,000 pods is a 40x increase of collected data, 
all with a single, relatively small change from VMs to containers. 
The good news is that by slicing it up more granularly, teams can 
dive into more detail and pinpoint issues at a more granular level 
more quickly.

However, in practice, cardinality works exactly in this way, 
quickly multiplying the data points per time interval, for 
example, for the number of (identical) instances of a 
Kubernetes service running on different pods: if there are 20 
instances of a service running on 20 different Kubernetes 
pods, Prometheus (and pretty much every other time-series 
database) includes the 20 unique values and increases the 
cardinality and data points per second by 20 times.

And often, those that add dimensions to the platform, aren’t 
the ones responsible for the performance and operations of the 
platform itself, creating a tension between consumers of the 
data and the observability platform team. And while the choice 
of time-series database has a definite impact on the level at 
which cardinality performance starts to suffer, dealing with 
cardinality, ingestion rate, and other exponential data growth 
challenges are the key operational priority for the observability 
team to ensure adequate service levels of the platform. The 
compute and storage needed to process all this data quickly 
is just not cost-effective at this scale, creating bottlenecks for 
reliability, latency and ingestion, and processing rate. 

Low response time and quick processing of ingested data are 
key when iterating rapidly through hypothesis after hypothesis 
to explore the various potential sources of an issue with a 
production service, and you’d want every team to be able to 
query large volumes of (near-) realtime data with sub-second 
latencies.

Now that we understand the knobs we can tune, let’s dive into 
how we can actually gather more dimensions for each metric, 
without degrading performance.

HTTP routes

Service

VM Host
Virtual Machine

Service

POD

Experiment/
Version

HTTP routes

CNTR CNTR CNTR

CNTR CNTR CNTR

CNTR CNTR CNTR

CNTR CNTR CNTR

Imagine this single virtual 
machine-based example, where 
300 virtual machines host 5 
services. Each service has 5 HTTP 
status code types and 20 HTTP 
routes. This setup, while simple, 
already results in 150 thousand 
possible unique time series.

Now imagine a similar container-
based example, with the same 
5 services, 5 HTTP status code 
types and 20 HTTP routes, but now 
running on 12,000 pods results in six 
million possible unique time series.

Image 3: a simple VM-based architecture

Image 4: a more complex container-based 
architecture
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Effectively balancing cardinality 
and cost/complexity

Each team has to continuously make accurate trade-offs between the cost of observing their 
service (or application), and the value of the insights the platform drives, looking for a continuously 
moving sweet spot. This sweet spot will be different for every service, as some have higher business 
value than others, so those services can capture more dimensions, with higher cardinality, better 
resolution, and longer retention than others. 

So we now understand the tightrope that we must walk across, balancing highly detailed insights 
with the exponential cost and complexity associated with this level of detail. This constant 
balancing of cost and derived value also means there is no easy fix. No cheat code to an optimal 
observability system. There are, however, some things you can do. In this chapter, we’ll dive into best 
practices that help you make the most impact.

Understanding the landscape
Every organization, according to Conway’s law, is prone to shipping software systems that mirror 
their organizational chart. That means that any organization that benefits from a microservices 
architecture is inherently a complex organization, with a complex technical landscape. Teams need 
to be able to decipher and triage issues, cutting through both the organizational and technical 
complexities by having adequate observable systems that span the entire landscape of distributed 
services, not just their microservice.

That means teams must understand their place in the landscape, and know what part their 
services play in the organization’s value streams to fully understand expected and normal traffic 
flows, requests and data. These help inform teams what parts of their service they need to 
instrument at what level.

There are various activities teams can engage in to create a better understanding of their place 
in the application services landscape. Value Stream Mapping is a key example that helps teams 
create an understanding of the value stream their services are a part of by visualizing the flow 
of value through the organization. It can be especially useful for figuring out technical and 
organizational dependencies. On the observability side of things, being able to see dashboards 
and metrics of services that they depend on, and of services that depend on them, can help create 
cohesion and understanding between teams with adjacent services.

Setting guardrails
Observability platforms are usually shared between teams. That means that teams can’t take up 
more than their fair share of the platform’s resources. What this fair share entails, depends on the 
business value of each of the team’s services, and translates into a per-service or per-team budget. 
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Teams can then work out the cost vs. benefit tradeoff to stay within that budget, aligning the  
level of detail with the allotment of capacity. The observability team helps teams to stay within 
budget when they, inevitably, add dimensions and increase cardinality, resolution or retention  
as time passes.

With guardrails in place, teams can now make their services observable, adding the right 
dimensions, metrics, tags, and labels to be able to troubleshoot and triage services as issues occur, 
without overrunning their budget, overusing resources or grinding the platform to a halt.

Standardize common instrumentation
One key value an observability platform team brings to the table is the ability to standardize across 
the loosely coupled landscape of application or feature teams and their microservices. 

They’re uniquely positioned to create internal frameworks that standardize how to instrument 
common services, like container platforms, database services, load balancers, and more. This helps 
limit the cardinality of the overall system by removing the variation and duplication of many teams 
each doing the same boilerplate work a little differently. 

And thanks to many open source tools like nginx and Envoy that standardized on the OpenMetrics 
format, it becomes quite easy for the observability team to enable standardized metrics out of the box.

That common and shared framework of instrumenting common services also allows the 
observability platform team to implement and show common instrumentation principles and best 
practices. Not only does this help with consistent implementation across the landscape, it also 
helps with onboarding teams, speeding up the instrumentation phase, and frees up teams to spend 
on more valuable work instead reducing resources and effort spent on the common layers of the 
infrastructure.

Now, a framework is just that: scaffolding that provides structural support. But the framework 
shouldn’t be so prescriptive that teams cannot deviate; the goal is to create a framework that helps 
teams to get to 80% quickly and consistently by using languages that have pre-built support for 
automatic instrumentation, service scaffolding templates, or leveraging side car service mesh 
architectures. The goal of the 80% rule is to provide a basic, consistent implementation across 
common technologies and shared infrastructure, so that teams don’t have to spend time and effort 
on non-differentiating work, and instead can focus on the 20%.

The 20% is likely highly specific to each individual team, which is where teams need the freedom 
and flexibility to deviate from a standard. The observability team acts as a trusted advisor to help 
other teams reduce the exponential growth that high-cardinality data sets pose and optimize the 
insights driven by this 20%.

Teaching all teams the same way of work, with the same best practices, has the added benefit of 
consistency, making it easy for teams to explore and observe adjacent services that they don’t own, 
building a uniform and shared understanding across the services landscape, and helps keep the 
entire system maintainable and future-proof.
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Limiting dimensionality
The simplest way of managing the explosion of observability data is by reducing what dimensions 
you collect for metrics. By setting standards on what types of labels are collected as part of a 
metric, some of the cardinality can be farmed out to a log or a trace, which are much less affected 
by the high cardinality problem. And as discussed in the previous chapter, the observability team is 
uniquely positioned to help teams set sane defaults for their services.

These standards may include how and what metrics will use what labels, moving higher cardinality 
dimensions like unique request IDs to the tracing system to unburden the metrics system.

This is a strategy that limits what is ingested, limiting the amount of data sent to the metrics 
platform. This can be a good strategy when teams and applications are emitting metrics data that 
is not relevant, reducing cardinality before it becomes a problem. And isn’t preventing problems 
favorable to solving them?

Image 5: monitoring the metrics

This can be done by setting up monitoring and alerting for what metrics data each service and/
or team emits, as seen by the example in image 5. By measuring the usage, teams can see what 
resources they are consuming, and weigh it against cost and derived value of the insights the data 
brings them. Observability teams can help developers understand what metrics data they are 
producing, and where high cardinality labels and dimensions may cause problems, and how  
to solve them.
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Unfortunately, it’s not always possible to reduce the cardinality of the metrics data as emitted by the 
monitored service. Sometimes, it’s because we’re troubleshooting a hard-to-pinpoint issue, and we 
need the additional context these labels give us to exclude contributing factors or dive deeper into 
a theory. There’s also scenarios where teams have little control over what metrics data is emitted, 
for instance with commodity off-the-shelf services and applications. In these situations, reducing 
resolution, lowering retention, and aggregation give us alternatives to reduce both required storage 
capacity as well as computational load of queries.

Downsampling
Reducing resolution or downsampling is a tactic to reduce the overall volume of data by 
reducing the sampling rate of data. This is a great strategy to apply, as the value of the resolution 
of metrics data diminishes as it ages. Very high resolution is only really needed for the most 
recent data, and it’s perfectly ok for older data to have a much lower resolution so it’s cheaper to 
store and faster to query.

Downsampling can be done by reducing the rate at which metrics are emitted to the platform, or it 
can be done as it ages. This means that fresh data has the highest frequency, but more and more 
intermediate data points are removed from the data set as it ages. It is of course important to be 
able to apply resolution reduction policies at a granular level using filters, since different services 
and application components across different environments need different levels of granularity. 
Unfortunately, not every observability platform supports this level of granularity (like Prometheus), 
and only some do (like M3), making Prometheus ill-suited for long-term storage of metrics data.

By downsampling resolution as the metrics data ages, the amount of data that needs to be saved is 
reduced by orders of magnitude. Say we downsample data from 1 second to 1 minute, that is a 60x 
reduction of data we need to store. Additionally, it vastly improves query performance.

A solid downsampling strategy includes prioritizing what metrics data (per service, application 
or team) can be downsampled, and determining a staggering age strategy. Often, organizations 
adapt a week-month-year strategy to their exact needs, keeping high-resolution data for a week (or 
two), and stepping down resolution after a month (or two) and after a year, keeping a few years of 
data. With this strategy, teams retain the ability to do historical trend analysis with week-over-week, 
month-over-month and year-over-year.

Lowering retention
By lowering retention, we’re tweaking the total amount of metrics data kept in the system by 
discarding older data (optionally after downsampling first).

By classifying and prioritizing data, as we discussed in the Understanding the Landscape chapter, 
we can get a handle on what data is ephemeral and only needed for a relatively short amount 
of time (such as dev or staging environments, low-business-value services), and what data is 
important to keep for a longer period of time to refer back to as teams are triaging issues. Again, 
being able to apply these retention policies granularly is key for any production-ready system, as a 
one-size-fits-all approach just doesn’t work for every metric alike.

https://containerjournal.com/features/how-to-avoid-drowning-in-cloud-native-observability-data/
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For production environments, keeping a long-term record, even at a lower resolution, is key to 
looking at longer trends and being able to compare year-over-year. However, we don’t need all 
dimensions or even metrics for this long-term analysis. Helping teams choose what data to keep, 
at a low resolution, and what metrics to discard after a certain time will help limit the amount of 
metrics data that we store, but never look at again.

Similarly, we don’t need to keep data for some kinds of environments, such as dev, test, or staging 
environments. Likewise for, services with low business value or non-customer facing, internal 
services. By choosing to limit retention for these, teams can balance their ability to query health and 
operational state, without overburdening the metrics platform.

Aggregation
Aggregation is a completely different form of downsampling. Instead of throwing away intermediate 
data points, you can aggregate individual data points into new summarized data points. This 
reduces the amount of data that needs to be processed and stored, lowering storage cost and 
improving query performance for larger, older data sets.

Aggregation can be a better strategy because it lets teams continue to emit highly dimensional, 
high-cardinality data from their services, and then adjust it based on the value it provides as it ages.

While tweaking resolution and retention are relatively simple ways to reduce the amount of data 
stored by deleting data, they don’t do much to reduce the computational load on the observability 
system. Because teams often don’t need to view metrics across all dimensions, a simplified, 
aggregate view (for instance, without a per-pod or per-label level) is good enough to understand 
how your system is performing at a high level. So instead of querying tens of thousands of time 
series across all pods and labels, we can make do with querying the aggregate view and with only a 
few hundred time series.

Aggregation is a way to roll up data into a more summarized but less-dimensional state, creating a 
specific view of metrics and dimensions that are important. The underlying raw metrics data can be 
kept for other use cases, or it can be discarded to save on storage space and to reduce cardinality 
of data if there is no use for the raw unaggregated data.

There are two schools of aggregation: streaming vs. batch. With stream aggregation, metrics 
data is streaming continuously, and the aggregation is done in memory on the streaming ingest 
path before writing results to the time series database. Because data is aggregated in real-time, 
streaming aggregation is typically meant for information that’s needed immediately. This is 
especially useful for dashboards, which need to query the same expression repeatedly every time 

Ingest TSDBStreaming Aggregation

Image 6: streaming aggregation

https://thenewstack.io/the-growth-of-observability-data-is-out-of-control/
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they refresh. Streaming aggregation makes it easy to drop  
the raw unaggregated data to avoid unnecessary load on  
the database.

Batch aggregation first stores raw metrics in the time series 
database, and periodically fetches them and writes back the 
aggregated metrics. Because data is aggregated in batches 
over time, batch aggregation is typically done for larger swaths 
of data that isn’t time-sensitive. Batch aggregation cannot 
skip ingesting the raw non-aggregated data, and even incurs 
additional load as written raw data has to be read, and re-
written to the database, adding additional query overhead.

The additional overhead of batch aggregation makes streaming 
better suited to scaling the platform, but there are limits to the 
complexity real-time processing can handle due to the real 
time nature; batch processing can deal with more complex 
expressions and queries. 

Optimizing for heavy queries is a prime example of where the 
observability team’s expertise comes in. For instance, taking 
a highly-dimensional metric, and using aggregation to turn it 
into two metrics that retain a subset of the cardinality to match 
how the data is consumed, can optimize query performance 
significantly. The ability to share this knowledge across all teams 
using the platform ensures performance maintains adequate 
levels, regardless of who creates the queries. Aggregations are 
an important, perhaps even the most effective of these three 
strategies.

Suffice it to say that there are different approaches (like 
Prometheus’ Recording Rules and M3’s Rollup Rules). Choosing 
the right one is especially important when you’d want to drop 
the original data, which is not possible on all platforms.  If you 
want to dive deeper into practical approaches, Chapter 4 of the 
O’Reilly Report on Cloud Native Monitoring 1 goes into a great  
level of detail.

Ingest
Batch
JobTSDB

Image 7: batch aggregation

 1  https://go.chronosphere.io/oreilly-report-cloud-native-monitoring.html

https://go.chronosphere.io/oreilly-report-cloud-native-monitoring.html
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Observe the observability platform
Operating an observability platform that continuously drives more valuable insights than the 
cost and effort put into it is incredibly hard. It requires constant tweaking of the platform and the 
observability data each service emits onto the platform. It also requires making the right decisions 
on time-series database, ingestion infrastructure, and processing capabilities. 

In addition to offering best practices to product teams to keep the system up and running, the 
observability team can use the platform to gain insights into how teams are using the platform 
and help them optimize their usage. For instance, by keeping track of the volume per labels or 
metrics, the observability team can put rate limiting in place, or limit the number of metrics/labels 
each team is allowed. They can also put query limitations in place to prevent a single user from 
overloading the entire system with a slow or computationally heavy query.

This way, the platform teams can create an overview of how teams are using the platform, giving 
them the ability to sit down with specific teams on specific issues, helping them optimize retention, 
resolution and aggregation where needed. The team then refines best practices, shares gained 
insights and learnings, and organizes periodic knowledge transfer sessions.

And this much needed, as observability is a moving goalpost. Observability moves where the 
business and technical priorities are. As the business evolves, and the technological landscape 
evolves, what we measure and monitor changes as well. To be successful, platform and 
development teams need to recognize, and stay on top of, growing pains, bottlenecks caused by 
(the removal of) technical debt, market conditions, seasonality, changing business priorities, or 
other factors.

This creates a sense of shared, but distinctly divided ownership where individual teams own the 
observability of their own services, but the platform team is responsible for the overall health and 
optimal usage of the observability platform.

The platform team helps individual teams adopt and implement observability, so that everyone can 
make the most out of the investments into the platform, but puts development teams squarely in 
charge of their own observability journey and destiny, and makes observability a first-class citizen 
and a requirement for shipping to production.
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Summary

Observability is a key capability – and skill – to cope with the growing complexity of cloud 
native applications. It is the flashlight that helps shine light on complex, emergent, and transient 
application behaviors. It democratizes the expertise needed to create insights that help improve 
customer experience continuously – and sometimes drastically.

In this paper, we’ve seen that observability platform teams are the key providers, and educators, of 
these capabilities. To empower developers to own the resilience, performance, and security of their 
services in production. 

To make this happen, observability teams must continuously balance cardinality, resolution 
retention, and aggregation to manage the unbridled data growth and cost of storing and 
processing these vast amounts of telemetry. It’s their job to make observability cost-effective, and 
keep it that way as the platform scales and your business grows.

The key challenge is to allow teams to emit the right amount of data with the right precision and 
granularity so they can derive the right decisions from the data to continuously improve their 
customer service and solve problems faster. 

Finding the right balance between too much information and not enough requires observability and 
development teams alike to understand the business that they’re operating in, and to understand 
the business value of the services they’re working on. That will help them understand where high 
cardinality is most valuable, to optimize resolution and retention for critical services, and to reduce 
cost by tweaking retention, resolution, and cardinality based on the business priorities.

We’ve seen that the right controls must be in place before the data volume becomes a problem to 
be successful in the future, instead of having to dial down precision because of platform limitations.

And really, what’s better than being able to say ‘sure, add another label’ when a critical service is 
having a hard-to-troubleshoot performance issue?
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Taming rampant data  
growth with Chronosphere

Chronopshere understands the high cardinality problem first hand. The company’s co-founders 
Martin Mao (CEO) and Rob Skillington (CTO) previously ran the observability team at Uber where 
they solved the challenge of running large-scale observability for cloud native environments.

A key differentiator of Chronosphere’s observability platform value is the control plane, which  
allows customers to aggregate, adjust resolution, and set retention on their observability data.  
This helps them manage the amount of metric data they are paying to keep, and eliminates 
surprise overages. Chronosphere customers have realized a reduction in metric cardinality by  
up to 98% per rule and 50% overall on spikes.

Chronosphere is the only observability platform that puts you back in control by taming rampant 
data growth and cloud native complexity, delivering increased business confidence. Engineering 
organizations at startups to well-known global brands in the Fortune 500 around the world trust 
Chronosphere to help them operate scalable, highly available, and resilient applications.
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trying to keep up with the pace, scale and ephemeral nature of cloud native applications. 

This paper was sponsored by Chronosphere. However, TLA Tech retains final editorial control over 
this publication. Copyright © 2022 TLA Tech B.V.. All rights reserved worldwide.


